

Other Topics

Mar 8 2016

Charlotte Wickham

VSC

Announcements Some other topics:

- Missing data
- Unequally spaced data
- Longitudinal data

Project time @ 11:05am

Monday March 14th 0930-1120 GLSN 100 (here) **Don't forget daylight savings!**

Similar to last time's final:

- Q1. Identify SARIMA model
- Q2. Frequency domain analysis
- Q3. Regression with time series errors
- Q4. ? (conceptual)

Office hours

This week as per usual (Tu 2-3, W 1-2, Th 2-3) **+ Friday 1-2pm** Thursday

Don't forget peer eval forms Presentations: Matt's, Mike's, Jeremiah's, Review

Missing data

With time series data, it is best to be explicit about missing data:

> with_miss[19:23,]								
	date	Х						
19	2015-01-22	-1.997787						
20	2015-01-23	-2.351314						
21	2015-01-24	-1.960690						
22	2015-01-26	-3.330436						
23	2015-01-29	-3.762846						

> e	explicit_mis	ss[22:29,]
	date	Х
22	2015-01-22	-1.997787
23	2015-01-23	-2.351314
24	2015-01-24	-1.960690
25	2015-01-25	NA
26	2015-01-26	-3.330436
27	2015-01-27	NA
28	2015-01-28	NA
29	2015-01-29	-3 762846

Why? You will find out quickly when missing values are a problem

If missing values are a problem...

Some objects can still be estimated even with missing values, (i.e. na.action = na.pass, in acf), but be aware of what is being done with them.

Imputation may be appropriate.

Missing at random?

E.g. sample acf

> acf(explicit_miss\$x)
Error in na.fail.default(as.ts(x)) : missing values in object

 $acf(with_miss$x, ylim = c(0, 1))$

acf(explicit_miss\$x, ylim = c(0, 1), na.action = na.pass) Series explicit_miss\$x

It's your responsibility to investigate how the function is dealing with missing values

Series explicit_miss\$x

Lag

Unequally spaced time series

Unequally spaced (due to missing values)

Unequally spaced x(t), t∈R

Continuous time correlation models

The general idea: move from autocorrelation defined at **integer lags**,

AR(1),
$$\gamma$$
(h) = Φ^{h} , h = 0, 1, 2, ...

to auto-correlation function defined at continuous distances,

CAR(1) model, $\gamma(s) = \mathbf{\Phi}^s$, $s \ge 0$

Connection to spatial statistics

The correlogram, $\rho(s)$, is the name of sample version of the ACF in the continuous case.

But by convention people usually look at the (semi)-variogram,

$$V(s) = \gamma(0) (1 - \rho(s))$$

this plays the role of the ACF in spatial statistics

FIGURE 5.9. Plots of semivariogram versus distance for the isotropic spatial correlation models in Table 5.2 with range = 1 and nugget effect = 0.1.

Just like in time series, there are spatial correlation models, that have specified shapes.

Longitudinal Data

Collection of time series, often short. Usual regression analyses with addition of:

- random effects structure (due to design)
- correlation in time (due to repeated measurements)

Be careful with specifying time correlation structure when you have many series.

Mixed Effects Models in S & S-Plus Jose C. Pinheiro Douglas M. Bates, Sections 5.1- 5.3 http://search.library.oregonstate.edu/OSU:everything:CP71188863930001451

library(nlme) ?Ovary

Pierson and Ginther (1987) report on a study of the number of large ovarian follicles detected in different mares at several times in their estrus cycles.

This data frame contains the following columns: Mare, an ordered factor indicating the mare on which the measurement is made.

Time, time in the estrus cycle. The data were recorded daily from 3 days before ovulation until 3 days after the next ovulation. The measurement times for each mare are scaled so that the ovulations for each mare occur at times 0 and 1.

follicles, the number of ovarian follicles greater than 10 mm in diameter.

>	nead((Ovary)				
Gro	ouped	Data:	folli	icles	~ Time	Mare
Μ	lare		Time	folli	cles	
1	1	-0.1363	36360		20	
2	1	-0.0909	90910		15	
3	1	-0.0454	15455		19	
4	1	0.0000	00000		16	-
5	1	0.0454	15455		13	
6	1	0.0909	90910		10	
			•			
27	1	1.045	455		10	
28	1	1.090	909		11	
29	1	1.136	364		16	
30	2	-0.150	000		6	
31	2	-0.100	000		6	
32	2	-0.050	000		8	

What could go wrong if we fed the follicles column in to the acf?

An example

Go through example in R. Tentative model for *i*th mare at *j*th time $y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) \sin(2\pi t_{ij}) + \beta_2 \cos(2\pi t_{ij}) + \epsilon_{ij}$

 b_{0i} , b_{1i} are random effects for mare ϵ_{ij} usual errors