

Bivariate Series

March | 2016

Charlotte Wickham

stat565.cwick.co.nz

Announcements

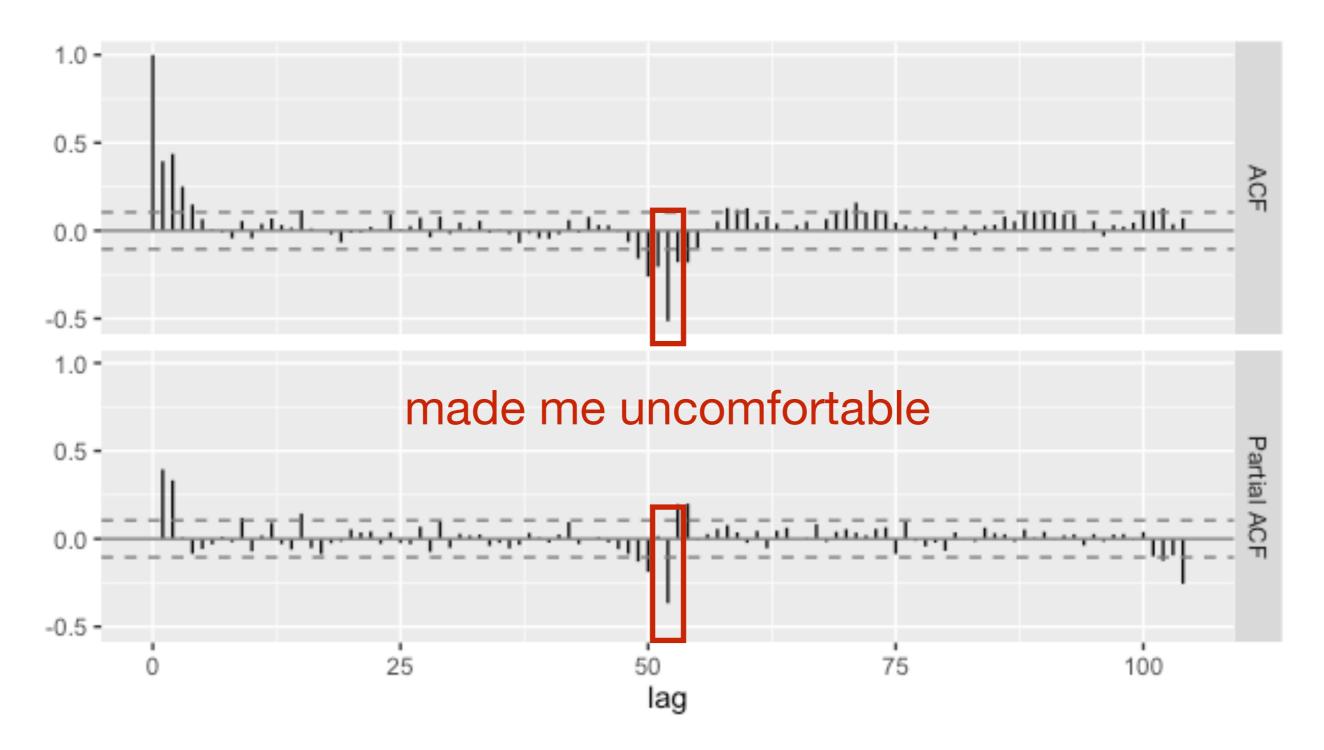
Project Proposals all look good! Presentations?

Thursday this week Tuesday next week Thursday next week

Today

HW #6 Return to mortality example Bivariate series Project time

Mortality Regression Example



Over differencing

Bivariate series

Imagine we observe two stationary time series $(X_t, Y_t), \quad t=1, ..., N$ We call the pairs a bivariate time series $E(X_t) = \mu_{X_t}, \quad Cov(X_t, X_{t+h}) = \mathbf{Y}_X(h)$ $E(Y_t) = \mu_{Y_t}, \quad Cov(Y_t, Y_{t+h}) = \mathbf{Y}_Y(h)$

We've already considered this case when doing regression, but now we'll let the two series stand on equal footing.

The cross covariance

$$Cov(X_t, Y_{t+k}) = E[(X_t - \mu_X)(Y_{t+k} - \mu_Y)] = \gamma_{XY}(k)$$

measures the covariance between one series and leading values of the other

$$\gamma_{XY}(k) \neq \gamma_{XY}(-k)$$

 $\gamma_{XY}(k) = \gamma_{YX}(-k)$

it isn't an even function

$$\rho_{XY}(k) = \frac{\gamma_{XY}(k)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}$$
$$\rho_{XY}(0) \neq 1$$

the cross correlation

The sample cross covariance

$$c_{XY}(k) = \begin{cases} \sum_{t=1}^{N-k} (x_t - \bar{x})(y_{t+k} - \bar{y})/N & k = 0, 1, \dots, N-1\\ \sum_{t=1-k}^{N} (x_t - \bar{x})(y_{t+k} - \bar{y})/N & k = -1, \dots, -(N-1) \end{cases}$$

 $r_{XY}(k) = c_{XY}(k)/s_X s_Y$ sample cross correlation

asymptotically consistent and unbiased estimate of the cross correlation, **but**

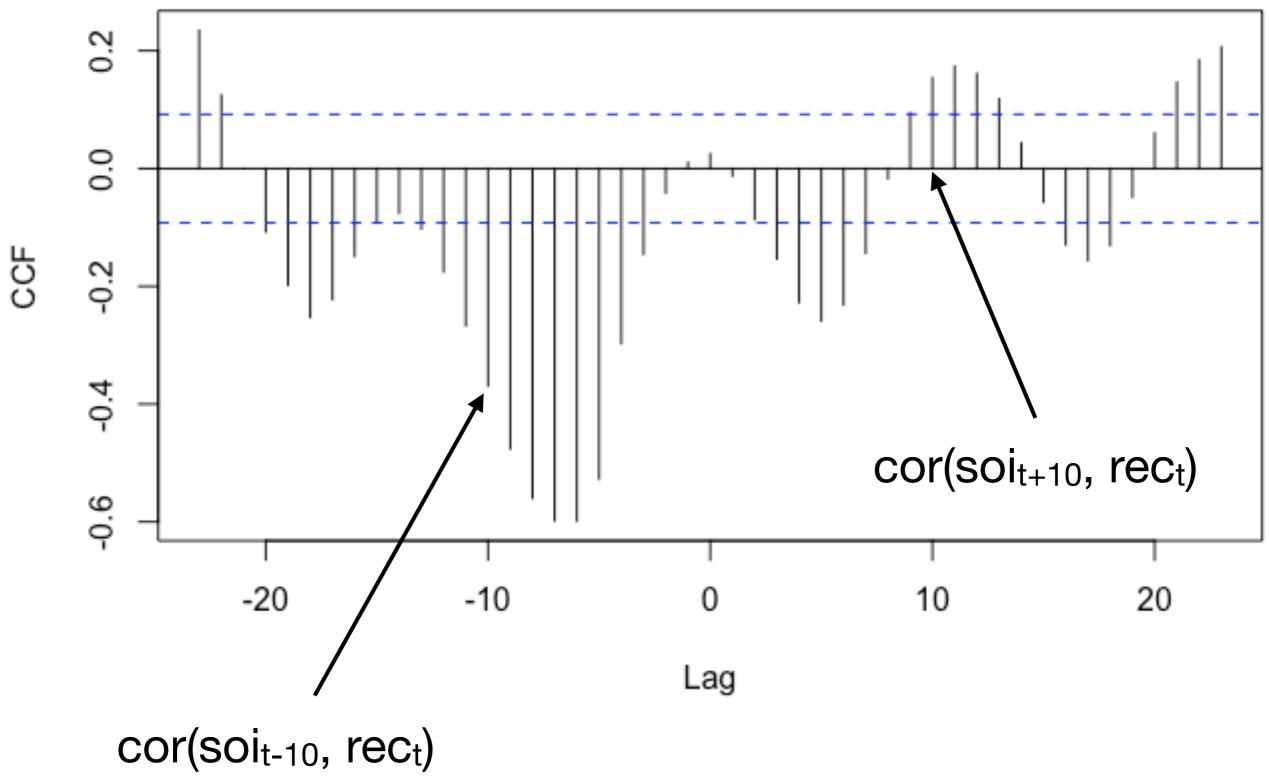
 $r_{XY}(k)$ correlated with $r_{XY}(k\,+\,1),$ and the variance of $r_{XY}(k)$ depends on autocorrelation of X and Y

generally filter series to remove correlation first

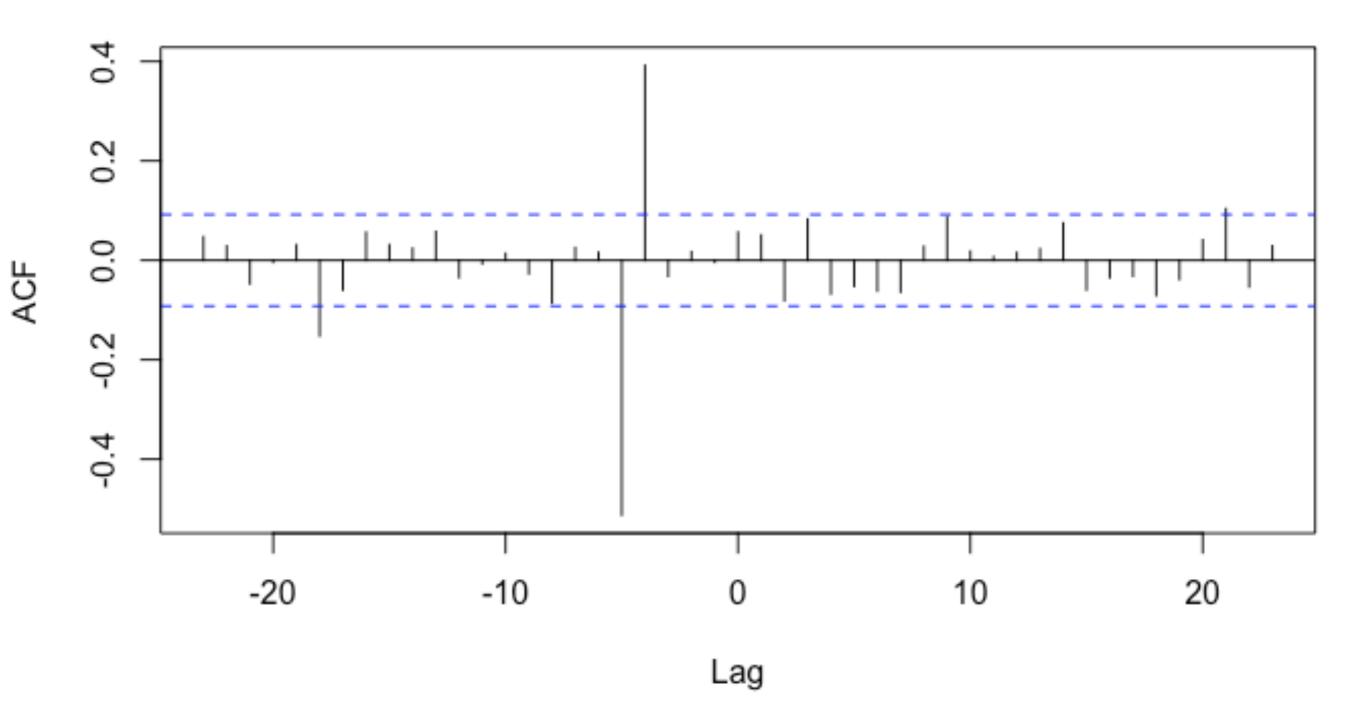
Southern Oscillation Index (proxy of El Nino)

Recruitment series - that's the number of new fish to some area

soi & rec



soi_prewhitened & rec_prewhitened



The cross spectrum
$$f_{XY}(\omega) = \frac{1}{\pi} \left[\sum_{k=-\infty}^{\infty} \gamma_{XY}(k) e^{-i\omega k} \right] \quad 0 < \omega < \pi$$

complex valued, i.e. it has real and imaginary parts

$$c(\omega) = \frac{1}{\pi} \left\{ \gamma_{XY}(0) + \sum_{k=1}^{\infty} \left[\gamma_{XY}(k) + \gamma_{YX}(k) \right] \cos(\omega k) \right\}$$

co-spectrum, real part

$$q(\omega) = \frac{1}{\pi} \left\{ \sum_{k=1}^{\infty} \left[\gamma_{XY}(k) - \gamma_{YX}(k) \right] \sin(\omega k) \right\}$$

quadrature, imaginary part

Some derived functions

$$f_{XY}(\omega) = c(\omega) + iq(\omega)$$

$$f_{XY}(\omega) = \alpha_{XY}(\omega)e^{i\phi_{XY}(\omega)}$$

$$\alpha_{XY}(\omega) = \sqrt{c^2(\omega) + q^2(\omega)}$$
 cross-amplitude
 $\phi_{XY}(\omega) = \tan^{-1}[-q(\omega)/c(\omega)]$ phase

 $C(\omega) = \alpha_{XY}^2(\omega) / f_X(\omega) f_Y(\omega)$

$G_{XY}(\omega) = \alpha_{XY}(\omega) / f_X(\omega)$

coherence

squared linear correlation at frequency $\boldsymbol{\omega}$

gain

regression coefficient of Y_t on X_t at frequency ω

Estimating the cross spectrum

The cross periodogram is a function of the coefficients from the Fourier expansion of X_t and Y_t

 $I_{XY}(\omega_p) = N(a_{px}a_{py} + b_{px}b_{py})/4\pi + iN(a_{px}b_{py} - a_{py}b_{px})/4\pi$

smooth to get consistent estimates of $\hat{c}(\omega_p)$ and $\hat{q}(\omega_p)$

No extra calculation beyond individual series periodograms.

Southern Oscillation Index

Back to example in R