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Today

• Finish up spectrum 
• Estimating the spectrum: the 

“periodogram” 
• Some periodogram analysis examples 
• Project time @11:05am



Review

Frequency domain analysis:  
We consider time series as the 
superposition of periodic (cos-sin pairs) 
functions at different frequencies. 
The spectral density function describes 
how much variance each frequency 
contributes to the variance of our process.



Spectrum and autocovariance
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The autocovariance function and the spectral density both 
contain the same amount of information.
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Derive spectrum for white noise



Derive spectrum for MA(1)

HW #7 



Spectrum for AR(1)



Fourier expansion
For a time series of length N (N even),the 
finite Fourier series expansion is, 
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equivalent to 
regression of xt on the 
cosine-sine pairs at 
frequencies 2πp/N



Parseval’s Theorem
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A plot of R2p/2 against ωp is called a line spectrum.   
Generally we actually plot  

We call I(ωp) the periodogram.
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The periodogram is an estimate of the spectrum

Can show: 

Compare to: 

The periodogram can be thought of as the 
“sample spectrum”
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ck = sample auto covariance at lag k



Can you guess the dominant frequencies in these (simulated) 
series?





Periodogram is asymptotically unbiased but not consistent!
n=

Ideally, with a very 
long series we 
would estimate a 
flat spectrum.

spectrum for white noise



Properties of I(ωp)

The periodogram is an asymptotically 
unbiased estimate of the spectrum. 
The periodogram is not a consistent 
estimator of the spectrum. 
I(ωi) I(ωj) are asymptotically independent, for 
ωi & ωj 
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Smoothing allows us to make the estimator 
consistent but introduces bias.   
The simplest case is simply to average 
neighboring values, 

where ωj are m consecutive Fourier frequencies 
centered around ω. 

Smoothed periodogram
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In practice, we use a weighted average, giving more 
weight to frequencies in the middle of the band.

where

bandwidth,
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Smoothing is subjective

Smoothing reduces variance, but it 
introduces bias. 
We want to reduce variance, without 
introducing too much bias. 
How much smoothing is subjective, 
and it’s worth playing with.



In R: spectrum
By default: 
Removes a linear trend 
Doesn't smooth 
But if you specify a span uses a “Modified 
Daniell” kernel 
Plots on a log scale 
Tapers (10% of data) when the true frequency occurs between Fourier 
frequencies, it's power will leak into Fourier frequencies around it, tapering attempts to reduce 
this (see C&C 14.5 for the best discussion)



Southern Oscillation Index

SOI is the pressure difference between Tahiti and Darwin, it 
should capture El Niño.



spectrum(soi) 

# no log scale, no taper, remove mean not trend 
spectrum(soi, log = "no", taper = 0, demean = TRUE, 
detrend = FALSE) 

# averaged periodogram (average over 2*4 + 1 = 9 
values)  
spectrum(soi, spans = 4, log = "no", taper = 0) 

# if you use the log scale you get a confidence 
band estimate 
spectrum(soi, spans = 4, taper = 0) 

# a kernel with more weight in the middle 
spectrum(soi, spans = c(3, 3), taper = 0)



Height of wave in wave tank



Good and broken motors



A different approach to estimating the spectrum

Fit a high order ARMA(p, q) process and use the relationship 
between the auto covariance function and spectrum. 
See spec.ar


