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e Finish up spectrum

e Estimating the spectrum: the
“periodogram’

e Some periodogram analysis examples
¢ Project time @11:05am



—eview

Frequency domain analysis:

We consider time series as the
superposition of periodic (Cos-sin pairs)
functions at different frequencies.

The spectral density function describes

how much variance each frequency
contributes to the variance of our process.




opectrum and autocovarancs

flw) = % v(0) + 2 Zv(k) cos wk

(k) = /O " cos(wh) F(w)duw

The autocovariance function and the spectral density both
contain the same amount of information.



ernve spectrum for wnite noise



Derive spectrum for MA(T)

HW #7




opectrum for A




—ourer expansion

For a time series of length N (N even),the
finite Fourler series expansion Is,

Lt —ag
(N/2)—1
4 Z a, cos(2mpt/N) + b, sin(2mpt /N )]
p=1
+ apn/acos(mt) t=1,..., N

t equivalent to

oz =2 (DN regression of x; on the
i = 2| wecos2mpt/N)| cosine-sine pairs at
by =2 |y wesin(2mpt/N)| /N frequencies 2mp/N

/N




“arseval’'s | neorem

N (N/2)—1
1/NZ(xt—:Z')2: Z R§/2+Na?\,/2
t=1 p=1
R, =/az + b2
wy = 21p/N

A plot of R%p/2 against wy is called a line spectrum.
Generally we actually plot

I(wp) = NR. /4

We call [(wp) the periodogram.



[he perlodogram Is an estimate of the spectrum
Ck = Sample auto covariance at lag k

Can show;
1 N—1
I(wy) = - (CO + 2 Z C); COS wpk)
k=1
Compare to:

flw) =~ (0) +2 > (k) coswk
_ k=1

The periodogram can be thought of as the
“sample spectrum’”



Can you guess the dominant frequencies in these (simulated)

series?
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Periodogram is asymptotically unbiased but not consistent!
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spectrum for white noise

|deally, with a very
long series we
would estimate a
flat spectrum.



Properties of [(wp)

The periodogram is an asymptotically
unbiased estimate of the spectrum.

The periodogram is not a consistent
estimator of the spectrum.

(W) l(wj) are asymptotically independent, for
Wi & W,



oMoothed periodogram

Smoothing allows us to make the estimator
consistent but introduces bias.

The simplest case is simply to average
neighboring values,

flw) = %ZI(%‘)

where w; are m consecutive Fourier frequencies
centered around w.




In practice, we use a weighted average, giving more
weight to frequencies in the middle of the band.

f(w): Z hil(w, + 27k /N)

k=—m

where Z hi =1 hk = the kernel

k=—m

m -1
Ly = ( 3 hﬁ) pandwidth, B = Ly,/n

k=—m



SMoothing IS subjective

Smoothing reduces variance, but it
iIntroduces bias.

We want to reduce variance, without
INntroducing too much bias.

How much smoothing Is subjective,
and it’'s worth playing with.



N R spectrum

By default:
Removes a linear trend

Doesn't smooth

Sut If you specity a span uses a “Modified
Daniell” kernel

Plots on a log scale
TaperS (1 O% Of data) when the true frequency occurs between Fourier

frequencies, it's power will leak into Fourier frequencies around it, tapering attempts to reduce
this (see C&C 14.5 for the best discussion)



southem Oscllation Index
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spectrum(soi)

# no log scale, no taper, remove mean not trend
spectrum(soi, log = "no", taper = @, demean = TRUE,
detrend = FALSE)

# averaged periodogram (average over 2*x4 + 1 = 9
values)
spectrum(soi, spans = 4, log = "no"”, taper = 0)

# 1f you use the log scale you get a confidence
band estimate
spectrum(soil, spans = 4, taper = 0)

# a kernel with more weight in the middle
spectrum(soi, spans = c(3, 3), taper = 0)
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A different approach to estimating the spectrum

Fit a high order ARMA(p, @) process and use the relationship
between the auto covariance function and spectrum.

See spec.ar Series: soi
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