

Spectrum

Feb 18 2016

Charlotte Wickham

stat565.cwick.co.nz

Correlated errors model

Works for incorporating trend and seasonality estimates too.

Think back to week 1 & 2

$y_t = m_t + S_t + Z_t$

Variable measured at time t

$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + ... + \beta_p x_{tp} + Z_t$

write our trend and seasonal parts as linear functions ARMA(p,q)

Trend and seasonality in regression models

Now we have lots of options:

trend

linear function of time (i.e. straight line) polynomial function of time splines smooths?

seasonality

fixed effects for season (months, quarters etc.) sinusoids splines smooths?

Retail sales in food and beverage stores

Model

sales_t = α + $\beta_1 t$ + $\beta_2 t^2$ + μ_{month} + Z_t

$z_t \text{ is AR(3)}$ $Z_t = \phi_{3}Z_{t-3} + \phi_{2}Z_{t-2} + \phi_{1}Z_{t-1} + W_t$

 $w_t \sim Normal(0, \sigma^2)$

Fitted model

Diagnostics

Using smooths in linear models

Generalized additive models (GAM) are an extension of linear models that removes the linearity assumption, i.e.

$$y_t = f(x_t) + z_t$$

where f is a smooth function

If z_t is not white noise, then it's called a generalized additive mixed model (GAMM)

gam and gamm functions in the mgcv package

ARMA models for stationary data provide a flexible way to explain autocorrelation structure

SARIMA	Regression with correlated errors
Difference to remove	Directly model
non-stationarity	non-stationarity
Use ARMA model to	Use ARMA model to
capture autocorrelation	capture autocorrelation in
after differencing.	the error term.

Moving to the frequency domain

	Time Domain	Frequency Domain
	xt linear combination of past	xt linear combination of periodic components
Object of interest	population ACF and PACF	Spectral Density
Data analysis tool	sample acf	Periodogram

Identify dominant freqenc(y/ies)

Where are we going?

Today: Spectral Density

motivation, examples

Then: Periodogram

the periodogram is an estimate of the spectral density

A quick trig review

Imagine a series,

$X_{t} = \underset{\uparrow}{R \cos (\omega t + \phi)}$ Amplitude

$\omega / (2\pi) = f$ Frequency (cycles per unit time)

$X_t = R \cos(t \omega + \mathbf{\Phi})$

Frequency, f

$x_t = A \cos \left(2\pi t \omega + \mathbf{\Phi} \right)$

Amplitude, R

$x_t = A \cos \left(2\pi t \omega + \mathbf{\Phi} \right)$

Phase, **φ**

φ = π/2 φ = 0 φ = -π/2

This isn't stationary, (why?), but it is if we assume R is a zero mean random variable and ϕ is Uniform(0, 2 π).

Generally we rewrite this as: $x_t = a \cos(\omega t) + b \sin(\omega t) + Z_t$

where
$$a = R \cos(\phi)$$
, $b = -R \sin(\phi)$
and $a^2 + b^2 = R^2$
(using the identity: $\cos(u + v) = \cos(u)\cos(v) - \sin(u)\sin(v)$)

Extend to

$x_t = \sum_j a_j \cos(\omega_j t) + b_j \sin(\omega_j t) + Z_t \quad j = 1, ..., k$ a sum of k periodic components

Deterministic example n=100

$$\begin{array}{ll} x_t = 2 \, \cos(2\pi t \, 6/n) \, + \, 3 \, \sin(2\pi \, 6/n) \, + \, & k=3 \\ 4 \, \cos(2\pi t \, 10/n) \, + 5 \, \sin(2\pi t \, 10/n) \, + \\ 6 \, \cos(2\pi t \, 40/n) \, + \, 7 \, \sin(2\pi t \, 40/n) \end{array}$$

Can you guess the dominant frequencies in these (simulated) series?

Spectral Representation Theorem

Any stationary time series may be thought of as the random superposition of sines and cosines oscillating at various frequencies.

$$x_t = \int_0^{\pi} \cos \omega t \, du(\omega) + \int_0^{\pi} \sin \omega t \, dv(\omega)$$

where $u(\omega)$ and $v(\omega)$ are uncorrelated continuous processes with orthogonal increments.

Every frequency, ω , between 0 and π contributes to the variation in the process.

Spectral distribution function

For any real valued stationary series, there exists a monotonically increasing function, F, such that

$$\gamma(k) = \int_{0}^{\pi} \cos(\omega k) \, dF(\omega) \qquad \qquad \mathsf{F(0)} = 0$$

Riemann–Stieltjes integral

F is called the power spectrum distribution function.

 $F(\omega)$ has a direct interpretation, it is the contribution to the variance from the frequencies in 0 to ω .

Riemann-Stieltjes integral

If F(x) is continuous, which it will be under certain conditions

$$\int_{a}^{b} g(x)dF(x) = \int_{a}^{b} g(x)f(x)dx, \text{ where } f(x) = F'(x)$$

$$\gamma(k) = \int_0^\pi \cos(\omega k) \, dF(\omega)$$

Show that the variance of x_t is $F(\pi)$.

Spectral density function

The derivative of the spectral distribution function is called the spectral density function, $f(\omega)$ (it exists for purely indeterministic discrete time stationary processes).

A.k.a. the spectrum

f(ω) d ω is the contribution to the variance of the frequencies (ω , ω + d ω).

We draw $f(\omega)$ against ω and examine it.

Some examples

1. Joel Gorder Dane Skinner Christopher Skypeck

2. Jeremiah Cloud **Daniel Garmat** Merih Wahid

З.

Kyle Hirata Kai Li Senal Weerasooriya

4. **Daniel Claborne** Yijun Yang Songqing Ye Jonathon Valente 5. Caley Johns Johanna Doty **Casey Stevens** Song Hoa Choi

6. Meng Mei **Trevor Ruiz** Paul Logan Spencer Ledoux

7. Yun Tang Casey Bausell Si Liu Xiaoxi Gu

8. Samuel Engle Chenxiao Hu Arpita Mukherjee Camden Lopez

9.

Michael Dumelle **Tadesse Zemicheal** Amir Azarbakht

10. Jeremiah Groom Chuan Tian Laura Gamble Yiran Wang

11. Shivani Patel Karin Kralicek Paulo Jose Murillo Sandoval Peter Rise

12. Matthew Higham Mai Nguyen Alyssa Pedersen

11am Project Time

Agenda

- 1. Introduce yourselves
- 2. Exchange emails and agree on how you will collaborate (dropbox/google drive/github latex/word etc.)
- 3. Discuss possible topics
- 4. Agree on your next meeting time
- 5. Agree (and repeat back to your team) your tasks before the next meeting time

#4 and #5 should happen every time you meet!

Projects

Proposal due in one week. One page. I guarantee at least 15 mins of class time each lecture for the remaining weeks.

Final report due last day of class.

Deliverable is negotiable.