
Stat 565

Charlotte Wickham stat565.cwick.co.nz

Regression With Correlated Errors
Feb 9 2016



Projects

Final project due Thursday March 10th
Proposal due Thursday Feb 25th 

Groups of 3-5, I will assign and announce next week. 
In weeks 8, 9 & 10 we will have some in class time for 
working/getting advice on projects. 
On form, indicate: 

• preference for type of project 
• comfort/skill level 
• anything else I should know when assigning 

groups



SARIMA models
Good if you are just interested in a short 
term forecast. 
Doesn't result directly in estimates of 
parameters of the past, i.e. seasonal 
means, trends, regression parameters...

Today: regression models with correlated errors



Weekly cardiovascular mortality in LA

Can mortality be explained by temperature 
and particulate matter?



Regression with correlated errors

Use a regression model to explain the 
non-stationarity in mean. 

Extend the usual regression model to 
allow the errors to be an ARMA 
process.



Linear Regression Review

A linear regression model, models the 
response, yt, as a linear combination of p 
covariates, xt1, xt2, ..., xtp, and noise, εt. 
yt = β0 + β1 xt1 + β2 xt2 + ... + βp xtp + εt 

t = 1, ... , n 

y = Xβ + ε   
(in matrix notation, y is a nx1 vector of the responses, X is a nxp matrix of 
covariates, β a px1 vector of parameters, ε is a nx1 vector of errors)

you might be used to 
seeing i



Your turn

What are the assumptions of 
ordinary least squares regression?




Suggests the regression model: 
 mortalityt = β0 + β1t + β2tempt + β3tempt2 + β4partt + εt



> fit_lm <- lm(mortality ~ time0 + temp_sc + temp_2 + part, data = mort) 

I started time at 0, centered temp about it's mean 
and found the square of temp

> summary(fit_lm) 

Call: 
lm(formula = mortality ~ time0 + temp_sc + temp_2 + part, data = mort) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-19.0760  -4.2153  -0.4878   3.7435  29.2448  

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 81.565394   1.101148   74.07  < 2e-16 *** 
time0       -1.395901   0.101009  -13.82  < 2e-16 *** 
temp_sc     -0.472469   0.031622  -14.94  < 2e-16 *** 
temp_2       0.022588   0.002827    7.99 9.26e-15 *** 
part         0.255350   0.018857   13.54  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 6.385 on 503 degrees of freedom 
Multiple R-squared: 0.5954, Adjusted R-squared: 0.5922  
F-statistic:   185 on 4 and 503 DF,  p-value: < 2.2e-16  



Assumptions

Everything looks good, except....



examine_corr(residuals(fit_lm)) 

Assumptions say this should be white noise, looks like ?



Generalized Least Squares

Instead of variance σ2I, allow errors to have 
covariance matrix Σ. 
If Σ is known multiplying by Σ-1/2, reduces the 
problem to the usual regression problem. 
If Σ is unknown, start with estimating the β 
using OLS, use the residuals to estimate Σ 
and iterate.  Should converge to the MLEs 
(under Normal errors).



Correlated errors model
yt = β0 + β1 xt1 + β2 xt2 + ... + βp xtp + zt 

zt is a stationary ARMA(p,q) process 

Or equivalently zt ~ N(0, Σ) where,  
Σij = Cov(zi, zj) = ϒ( | i - j | )) = some function of σ2, β 
and α 

Plus usual assumptions: 
linearity, zt independent of X.



ARMA errors
If the errors are an ARMA process, Σ, can be 
written in terms of our parameters β and α.  
(Since Σij = Cov(zi, zj) = ɣ( | i - j | )) 

If we specify p and q, Σ is known up to β and 
α. 
and can be estimated by GLS. 
The standard errors on the regression 
coefficients, β, depend on X, σ2, β and α.



Procedure
1. Fit the model for the mean using 

OLS. 
2. Examine the residuals to identify an 

appropriate ARMA(p, q) process. 
3. Fit the GLS model. 
4. Model diagnostics. 
5. Interpret (forecast?).



In R

Either (a little more general, i.e. not just for time series): 
library(nlme) 

gls(y ~ x1 + x2,  

  correlation = corARMA(p = p, q = q),  

  method = "ML") 

Or (faster and can handle seasonal arima models): 
arima(y, order = c(p, d, q), xreg = X)



We already identified the errors in the mortality series as AR(2). 

gls_fit <- gls(mortality ~ time0 + temp_sc + temp_2 + part,  
             data = mort, 
             correlation = corARMA(p = 2), method = "ML")

arima_fit <- with(mort, arima(mortality, order = c(2, 0, 0),  
                xreg = cbind(time0, temp_sc, temp_2, part)))

or

AR(2): zt = α1zt-1 + α2zt-2 + wt



Diagnostics

residuals(arima_fit) gives estimates of wt, the 
white noise. 

residuals(gls_fit) gives estimates of zt, the 
ARMA process. 

use residuals(gls_fit, type = "normalized") to 
get wt





> round(confint(fit_lm), 2) 
            2.5 % 97.5 % 
(Intercept) 79.40  83.73 
time0       -1.59  -1.20 
temp_sc     -0.53  -0.41 
temp_2       0.02   0.03 
part         0.22   0.29

> round(intervals(gls_fit)$coef, 2) 
            lower  est. upper 
(Intercept) 82.25 87.61 92.96 
time0       -2.35 -1.52 -0.68 
temp_sc     -0.10 -0.02  0.07 
temp_2       0.01  0.02  0.02 
part         0.11  0.15  0.20

Ordinary linear regression 
Assume white noise errors

Linear regression with correlated 
errors 
Assume AR(2) errors

How would you interpret the coefficient on time0?

wrong right

> round(intervals(gls_fit)$corStruct, 2) 
     lower est. upper 
Phi1  0.35 0.38  0.38 
Phi2  0.35 0.43  0.51



Your turn
Where does most of the variation in temperature come 
from?

What about particulates?

What about mortality?


