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~roO|ects

Groups of 3-5, | will assign and announce next week.

In weeks 8, 9 & 10 we will
working/getting advice on

On form, indicate:

nave some In class time for

orojects.

* preference for type of project

e comfort/skill level

e anything else | should know when assigning

groups

Proposal due Thursday Feb 25th
Final project due Thursday March 10th



SARIMA models

Good if you are just interested In a short
term forecast.

Doesn't result directly In estimates of
parameters of the past, I.e. seasonal
means, trends, regression parameters...

Today: regression models with correlated errors



VVeekly caraiovascular mortality In LA
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Can mortality be explained by temperature
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Regression With correlated errors

Use a regression model to explain the
non-stationarity in mean.

Extend the usual regression model to
allow the errors to be an ARMA
Process.



_Inear Regression Review

A linear regression model, models the
response, Vi, as a linear combination of p
covariates, X1, Xt2, ..., Xip, and NOISe, Et.

Vt = Bo+ B1 Xt1 + Bz Xi2 + ... + Bpti+8t

t=1, ...,n
you might be used to

y — Xp 8 seeing i

(in matrix notation, y is a nx1 vector of the responses, Xis a nxp matrix of
covariates, 3 a px1 vector of parameters, € is a nx1 vector of errors)




Your turn

What are the assumptions of
ordinary least squares regression??



70
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Suggests the regression model:
mortality: = Bo + B1t + Botempt + Bstemp? + Bapart: + €t



> fit_1lm <- Im(mortality ~ time@ + temp_sc + temp_2 + part, data = mort)

t t t

| started time at O, centered temp about it's mean
and found the square of temp

> summary(fit_1m)

Call:
Im(formula = mortality ~ time@ + temp_sc + temp_2 + part, data = mort)
Residuals:

Min 1Q  Median 30 Max

-19.0760 -4.2153 -0.4878 3.7435 29.2448

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 81.565394 1.101148 74.07 < 2e-16 *x%

timeo -1.395901 0.101009 -13.82 < 2e-16 **%
temp_sc -0.472469 0.031622 -14.94 < 2e-16 *xxx%
temp_2 0.022588 0.002827 7.99 9.26e-15 **%
part 0.255350 0.018857 13.54 < 2e-16 *x*x%
Signif. codes: @ ‘**%’ 0.001 ‘x*’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 “ ’ 1

Residual standard error: 6.385 on 503 degrees of freedom
Multiple R-squared: ©.5954, Adjusted R-squared: ©.5922
F-statistic: 185 on 4 and 503 DF, p-value: < 2.2e-16



ASSUMPTIONS

Everything looks good, except....



examine_corr(residuals(fit_1m))
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Assumptions say this should be white noise, looks like 7



Generalized Least Sguares

Instead of variance 0?1, allow errors to have
covariance matrix 2.

If > is known multiplying by 2, reduces the
problem to the usual regression problem.

f 2 is unknown, start with estimating the 3
using OLS, use the residuals to estimate 2
and iterate. Should converge to the MLEs
(under Normal errors).




Correlated errors moael

= Bo+ B1 Xt1 + B2 Xio + ... + Bp Xep + Z4
Zt 1S a stationary ARMA(p,Q) process

Or equivalently z; ~ N(O, 2) where,

2i=Cov(z, z) =Y(|i-]j|)) =some function of 02, 3
and o

Plus usual assumptions:
inearity, z: Independent of X.



ARNMA errors

If the errors are an ARMA process, 2, can be
written in terms of our parameters 3 and o.

(Since Zj=Cov(z, z) = y(|i-j]|)

If we specify p and g, 2 iIs known up to 3 and
o.

and can be estimated by GLS.

The standard errors on the regression
coefficients, 3, depend on X, 0%, B and « .




Srocegure

. Fit the model for the mean using
OLS.

. Examine the residuals to identify an
appropriate ARMA(p, Q) process.

. Fit the GLS model.
. Model diagnostics.
. Interpret (forecast?).



n "

Either (a little more general, i.e. not just for time series):

library(nlme)

gls(y ~ x1 + x2,
correlation = corARMA(p = p, q = q),
method = "ML")

Or (faster and can handle seasonal arima models).

arima(y, order = c(p, d, q), xreg = X)



We already identified the errors in the mortality series as AR(2).

gls_fit <- gls(mortality ~ time@ + temp_sc + temp_2 + part,
data = mort,
correlation = corARMA(p = 2), method = "ML")

or

arima_fit <- with(mort, arima(mortality, order = c(2, 9, @),
xreg = cbind(time@, temp_sc, temp_2, part)))

AR(Q)Z Zt = (1211 + 02Zt-2 + Wh



lagnostics

residuals(arima_fit) gives estimates of wt, the
white noise.

residuals(gls_fit) gives estimates of zi, the
ARMA process.

use residuals(gls_fit, type = "normalized”) tO
get wy



Normal Q-Q Plot
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Wrong right

Ordinary linear regression  Linear regression with correlated
Assume white noise errors errors

Assume AR(2) errors

> round(confint(fit_1Im), 2) > round(intervals(gls_fit)$coef, 2)
2.5 % 97.5 % lower est. upper

(Intercept) 79.40 83.73 (Intercept) 82.25 87.61 92.96

time0 -1.59 -1.20 time0 -2.35 -1.52 -0.68

temp_sc -0.53 -0.41 temp_sc -0.10 -0.02 0.07

temp_2 0.02 0.03 temp_2 .01 0.02 0.02

part 0.22 0.29 part 0.11 0.15 0.20

> round(intervals(gls_fit)$corStruct, 2)

lower est. upper
Phil ©.35 0.38 0.38
Phi2 ©.35 0.43 0.5

How would you interpret the coefficient on timeQ?



Your turn

Where does most of the variation in temperature come
from?

What about particulates?
What about mortality?

value
dwsy

time



