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Today

A note from HW #3 
Pick up with ARIMA processes 
Introduction to forecasting



HW #3

Large Sample Theory 519

(iii): To show condition (iii) of the Basic Approximation Theorem, we can
focus on the element-by-element components of

P
{
|yyyn − yyymn| > ϵ

}
.

For example, using the Tchebycheff inequality, the h-th element of the
probability statement can be bounded by

nϵ−2var (γ̃(h) − γ̃m(h))

= ϵ−2 {n var γ̃(h) + n var γ̃m(h) − 2n cov[γ̃(h), γ̃m(h)]} .

Using the results that led to (A.53), we see that the preceding expression
approaches

(vhh + vhh − 2vhh)/ϵ2 = 0,

as m, n → ∞.

To obtain a result comparable to Theorem A.6 for the autocorrelation func-
tion ACF, we note the following theorem.

Theorem A.7 If xt is a stationary linear process of the form (1.31) satisfying
the fourth moment condition (A.50), then for fixed K,
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where W is the matrix with elements given by

wpq =
∞∑

u=−∞

[
ρ(u + p)ρ(u + q) + ρ(u − p)ρ(u + q) + 2ρ(p)ρ(q)ρ2(u)

− 2ρ(p)ρ(u)ρ(u + q) − 2ρ(q)ρ(u)ρ(u + p)
]

=
∞∑

u=1

[ρ(u + p) + ρ(u − p) − 2ρ(p)ρ(u)]

× [ρ(u + q) + ρ(u − q) − 2ρ(q)ρ(u)], (A.55)

where the last form is more convenient.

Proof. To prove the theorem, we use the delta method4 for the limiting
distribution of a function of the form

ggg(x0, x1, . . . , xK) = (x1/x0, . . . , xK/x0)′,

4The delta method states that if a k-dimensional vector sequence xxxn ∼ AN(µµµ, a2
nΣ),

with an → 0, and ggg(xxx) is an r × 1 continuously differentiable vector function of xxx, then
ggg(xxxn) ∼ AN(ggg(µµµ), a2

nDΣD′) where D is the r × k matrix with elements dij = ∂gi(xxx)
∂xj

∣∣
µµµ

.

The sample autocorrelation coefficients are biased.  
But asymptotically unbiased...

S&S



For white noise, W  = I, 
and we have r(h) ~ N(⍴(h), 1/n) 
Leads to CI’s of the form 0 ± 2/√n (the 
dashed lines in the acf plot).



HW #4 …Simulation:  
DO many times(  

    simulate a process 

    fit many AR models to the process 

    find the AIC for each model 

) 

Suggestion: 
do it once 
wrap that in a function, i.e. write a function that does it for one 
series, fit_ars( ) 
replicate(1000, failwith(NA, fit_ars)()) 



One error will stop everything! 
try, tryCatch in base R 
dplyr::failwith()   failwith(NA, fit_ars)() 
purrr::safely() 
Or  
method = “ML” in arima

Speed: microbenchmark package



HW #2 example
xt = β0 + β1t + wt       

∇xt = xt - xt-1 = β1 + wt - wt-1 

 a linear trend 

an MA(1) process with 
constant mean β1

xt is called ARIMA(0, 1, 1)

Difference twice, that would remove a 
quadratic trend in t



ARIMA(p, d, q)

A process xt is ARIMA(p, d, q) if xt 
differenced d times (∇dxt)  is an 
ARMA(p, q) process. 
I.e. xt is defined by 
ɸ(B) ∇d xt = θ(B) wt 

ɸ(B) (1 - B)d xt = θ(B) wt

Autoregressive Integrated Moving Average

arima(x, order = c(p, 1, q), xreg = 1:length(x)) 

forces constant in 1st 
differenced series



Procedure for ARIMA modeling

1. Plot the data.  Transform? Outliers? Differencing? 

2. Difference until series is stationary, i.e. find d. 

3. Examine differenced series and pick p and q. 

4. Fit ARIMA(p, d, q) model to original data. 

5. Check model diagnostics 

6. Forecast (back transform?)

We'll assume the primary goal is getting a forecast.
diff



Pick one:
Oil prices 
install.packages('TSA') 
data(oil.price, package = 'TSA') 

Global temperature 
load(url("http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda")) 

gtemp 

US GNP 
load(url("http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda")) 

gnp 

Sulphur Dioxide (LA county) 
load(url("http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda")) 

so2

http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda
http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda
http://www.stat.pitt.edu/stoffer/tsa3/tsa3.rda




Ex 1 Oil prices
1.



Linearly decreasing ACF, common sign 
of presence of trend, try differencing!



2.
1st difference



2.1st difference 
of log(price)



3. ACF and PACF on differenced log price

suggests MA(1)

suggests AR(2)



3.
n <- length(oil.price) 
(fit_ma1 <- arima(log(oil.price), order = c(0, 1, 1), xreg = 1:n)) 
(fit_ar2 <- arima(log(oil.price), order = c(2, 1, 0), xreg = 1:n)) 
(fit_arma1 <- arima(log(oil.price), order = c(1, 1, 1), xreg = 1:n)) 
(fit_ma2 <- arima(log(oil.price), order = c(0, 1, 2), xreg = 1:n))

trick ARIMA into estimating 
a constant in the differenced 
series

Choose MA(1) based on: 
* smallest AIC 
* in MA(2) θ1 is roughly the same and θ2  
isn't significant.



4. ACF and PACF on residuals from MA(1) model

Look good!



4.



4. Outlier?

Outlier?





SARIMA models
I haven't shown you any data with seasonality. 
The idea is very similar, if one seasonal cycle 
lasts for s measurements, then if we difference 
at lag s,  
yt = ∇sxt = xt - xt-s = (1 - Bs)xt,  
we will remove the seasonality.  
Differencing seasonally D times is denoted, 
∇D

sxt = (1 - Bs)Dxt, 



Monthly CO2 level at Alert, Northwest Territories, 
Canada



First difference
 ∇xt



+ first seasonal difference, lag 12
∇12 ∇xt



SARIMA
A multiplicative seasonal autoregressive 
integrated moving average model,  
SARIMA(p, d, q) x (P, D, Q)s  
is given by 
ɸ(Bs)ɸ(B) ∇Ds∇dxt = ϴ(Bs)θ(B)wt

Have to specify s, then choose p, d, q, P, D and Q

∇Ds∇dxt  is just an ARMA model with lots of 
coefficients set to zero.



Find model for SARIMA(1,0,0)x(0,1,1)12



Your turn
Find model for SARIMA(0,1,1) x (0,1,1)12



Procedure for SARIMA modeling

1. Plot the data.  Transform? Outliers? Differencing? 

2. Difference to remove trend, find d. Then difference to remove 
seasonality, find D. 

3. Examine acf and pacf of differenced series.  Find P and Q 
first, by examining just at lags s, 2s, 3s, etc.  Find p and q by 
examining between seasonal lags. 

4. Fit SARIMA(p, d, q)x(P, D, Q)s model to original data. 

5. Check model diagnostics 

6. Forecast (back transform?)

We'll assume the primary goal is getting a forecast.



s = 12, D = 1, d = 1 
ACF & PACF for ∇12 ∇xt

3.

Seasonal lags =12, 24, 36,...

tailing off

cutting off after 12



s = 12, D = 1, d = 1 
ACF & PACF for ∇12 ∇xt

3.

Non-seasonal lags

Cutting off after 1?

Tailing off 
or cutting off after 1 or 2?



Try

SARIMA ( 0, 1, 1 ) x ( 0, 1, 1)12 

SARIMA ( 1, 1, 0) x ( 0, 1, 1)12 

SARIMA ( 1, 1, 1 ) x ( 0, 1, 1)12

4.



5.



6.


