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Which basic models might

these simulated data come S -
from? 2 3
AR(1), MA(1), or white noise S T e
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ACF
One is AR(1), a1 = 0.6

The other is ARMA(1, 1), B1 = 0.5, a1 = 0.5

1 2

1.0-
0.5
OO - -‘_-l ............................................ -.-l_|--|-J-1 ..... T UETSUEY PEON S TSTars IS henenen Moneene e
0.5
1.0

0 5 10 15 20 25 0 5 10 15 20 25

lag

Which 1s whnich'”/



“artial autocorrelation tunction

Basic idea: what is the correlation between x; and
Xi+h, after taking into account Xiy1, Xte2, oovy Xteho1'?

Technically:

Regress x; 0N X1, Xiz2, ..., Xt+h-1 1O find the fitted
value )A(t.

Regress Xiih ON Xie1, Xizo, ..., Xteno1 10 find the fitted

Find cor(xt - Xt Xesn - Xern), call this PACF(h) = ¢y

Section 3.4 S&S for more detall



PACF

. _|_J_,_ _______________________________________ L__]_l__l_i_r _______________________________
MA(1): Xt = Wi +1/2 Wi-1 MA(2): xt = wt+ 1/6 W1 + 1/2 wio
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MAB): Xt = We- 1/2 Wit - 1/2 wiz+  MA(10), 8=1/2j=1,...10
1/4 Wi-3 + 1/4 Wi-4 +1/4 Wi-5



PACF

AR(1): Xt = wt +1/2 Xit-1 AR(2): Xt = Wi+ 1/6 Xt-1 + 1/2 Xt-2

AR(D): Xt = Wt - 1/2 Xt-1 - 1/2 Xt +
1/4 Xt-3 + 1/4 Xt-4 +1/4 Xt-5



PACF

ARMA(Q, 1): Xt = 1/2 W1 + Wt +

ARMA(1, 1): xt = 1/2 W1 + Wt +1/2 X-1
1/6 Xt-1 + 1/2 X2
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ARMA(Z,Q)Z Xt = 1/4Wt2 -1/2 W1 + Wi - ARIMA(Q,Q)Z Xt = -1/4wr2 +1/2 W1 + Wt +
1/2 X1 + 1/4 X2 1/9 Xt-1 + 1/9 X2




MA(q) AR(p) |ARMA(p, q)
ACF Zero tails off | tails off
lags > g
PACF cails off | Z6M0 1385 > | i off
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One is AR(1), a1 = 0.6

he other is ARMA(1, 1), B1 = 0.5, a1 = 0.5
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ACF

0.8

0.4

Corvallis temperature

Series corv$residual

ACF of residuals
----ZZZIZ‘ZZ‘I_JZJIJZﬂ:fif:fif:f:fIEZZIZZZIZZIIZZII‘ZZCZZZ{ZCZIZ{}IZZZI}ZLII}IZ:
| | | | | | | |
0 5 10 15 20 25 30 35




Partial ACF

0.6

0.4
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Corvalls temperature

pacf(corv$residual, na.action = na.pass)

Series corv$residual

PACF of residuals
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AR(1) looks like a good model

How do we fit it? |.e. how do we estimate o1?




ARMA(D, Q)

Assume we know the order of our
porocess, I.e. we know p and Q.

How do we estimate the [3s, as, and
0°7?



Your turn

Name three common approaches
to finding an estimate:

Hints:

M of M
L S

V] L

The default in R
Has nice properties



\/ \/

We have the theoretical ACF Iin terms of
o, 3 and o.

Set the theoretical ACF equal to our
sample ACF and solve for the
parameters.

S0, we don't get too confused, let p(h) denote the
theoretical ACF, and r(h) the sample ACF.



Corvalls temperature

Assume the residuals can be modelled
by an AR(1).

p(1) = ¢ $ = o, notation slip

A

r(1) = ¢ = 0.6607



AR,

For AR(p) processes we write down a
recursion,

p(h) =d1p(h—1)+ ...+ ¢pp(h —p), h=1,...,p
0 =~(0) (1 — ¢1p(1) — ... — dpp(p))

The Yule-Walker equations



ernve Yule-Vvalker egns



Yule-VWalker
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</§1 + <527’(1) 1
brr(1) + o + ...+ dpr(p —2)

—Stmates

o gb},r(p)

r(p) = gbl\lr(p— 1) -l—gb}r(p— 2) + ...+ gbAp

A set of p equations In p unknowns, solve for §51 to ép.



\VAG) and ARMAD, )

The method of moments approach gets
complicated. End up with non-linear
equations to be solved numerically.

The method of moments estimators
have bad properties for MA and ARMA
processes anyway, so we'll leave it here.



Your tum

Remember linear regression”?
Vi = Bo+ B1Xi + &

We can find estimates for 3o 31 by
MiNiMIzing



N S
Consider the AR(1) process

Xt = 1 Xt-1 + Wt

Define the residual, e; = 2 — a1 T¢—1

We could consider finding the &; that
Minimises the sum of squared

residuals,
Z (2 — d1zp_1)” = Z e? called
t=—2 =2 conditional

| least squares
since we don't see Xo



| S for VA

In general we can always define these
residuals, but for MA and ARMA processes
they are recursive. For example, MA(1)

€1 = X1 + 5160 assume eo = O

eo = To + 1€

en = Ty + B1€n_1



_ S N ARMA

For a general ARMA(p,Q):
€t = Lt — W1 Lt—1 — ... — Oplt—p

T 61616—1 T ... qut—q

And we have to set ep = ... = €p+1-q= 0,
and sum starting at t = p, to avoid the xi
we haven't observed

The minimization is done numerically
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Assume a distribution for the white noise
(usually Gaussian), then write the joint
density function of our data as a function
of the parameters, the likelihood,

L(B, B, 0°) = f(x1, Xo, ... Xn: B, 8, 09

FINnd the parameters that maximise the
ikelihood.

For the non-statisticans: The joint density, f, tells us the probability of our data given
certain parameter values. The likelihood, L, tells us how likely certain parameters are given
our data (f and L are the same function, we just switch what we consider to be the
variable). We estimate the parameters by choosing the most likely parameters given the

data we saw.
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Assuming our white noise is Gaussian
then the ARMA(p, Q), Xt, process is also
Gaussian and the likelihood is

x; ~ Normal, (0, X)
where Zij — COU(%‘,%‘) — ’Y(|Z — JD

lt's complicated, but there are general algorithms for
maximizing .



\Vaxmum Likelihood

The way the function arima in R does it
by default.

Nice asymptotic properties, deals with
mIssiNg data easily.

Always lower variance than method of
mMmoments.



-ItiNg 1N S
arima(ts, order = c(p, d, q))

T

ignore for now



Ihursday

I’m out of town.
Chris will lead lecture.
Bring laptops!



