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Which basic models might 
these simulated data come 

from?

AR(1), MA(1), or white noise

1

2 3

4 5



Which is which?

ACF
One is AR(1), α1 = 0.6

The other is ARMA(1, 1), β1 = 0.5, α1 = 0.5



Partial autocorrelation function

Basic idea: what is the correlation between xt and 
xt+h, after taking into account xt+1, xt+2, ..., xt+h-1? 

Technically:  
Regress xt on xt+1, xt+2, ..., xt+h-1 to find the fitted 
value x̂t.  
Regress xt+h on xt+1, xt+2, ..., xt+h-1 to find the fitted 
value x̂t+h. 
Find cor(xt -  x̂t, xt+h - x̂t+h), call this PACF(h) = ɸhh

Section 3.4 S&S for more detail



MA(q)

MA(1): xt = wt +1/2 wt-1 MA(2): xt = wt + 1/6 wt-1 + 1/2 wt-2

MA(5): xt = wt - 1/2 wt-1 - 1/2 wt-2 +  

1/4 wt-3 + 1/4 wt-4 +1/4 wt-5

MA(10), θj=1/2 j = 1,...,10

PACF



AR(p)

AR(1): xt = wt +1/2 xt-1 AR(2): xt = wt + 1/6 xt-1 + 1/2 xt-2

AR(5): xt = wt - 1/2 xt-1 - 1/2 xt-2 +  

1/4 xt-3 + 1/4 xt-4 +1/4 xt-5

AR(8), ɸj=1/9 j = 1,...,8

PACF

1



ARMA(p, q)

ARMA(1, 1): xt = 1/2 wt-1 + wt +1/2 xt-1 
ARMA(2, 1): xt = 1/2 wt-1 + wt + 

                       1/6 xt-1 + 1/2 xt-2

ARMA(2,2): xt = 1/4wt-2 -1/2 wt-1 + wt - 

                       1/2 xt-1 + 1/4 xt-2

ARMA(2,2): xt = -1/4wt-2 +1/2 wt-1 + wt + 

                       1/9 xt-1 + 1/9 xt-2

PACF



MA(q) AR(p) ARMA(p, q)

ACF
zero 

lags > q tails off tails off

PACF tails off
zero lags > 

p tails off



Which is which?

One is AR(1), α1 = 0.6
The other is ARMA(1, 1), β1 = 0.5, α1 = 0.5

ACF

PACF



Corvallis temperature

ACF of residuals



Corvallis temperature

PACF of residuals

AR(1) looks like a good model

How do we fit it? I.e. how do we estimate α1?

pacf(corv$residual, na.action = na.pass)



ARMA(p,q)

Assume we know the order of our 
process, i.e. we know p and q. 

How do we estimate the βs, αs, and 
σ2?



Your turn

Name three common approaches 
to finding an estimate:

Hints:

M            of M

L       S      

M               L               

The default in R 
Has nice properties



We have the theoretical ACF in terms of 
α, β and σ. 
Set the theoretical ACF equal to our 
sample ACF and solve for the 
parameters. 

M_____ __ M________

So, we don't get too confused, let ρ(h) denote the 
theoretical ACF, and r(h) the sample ACF.



Corvallis temperature

Assume the residuals can be modelled 
by an AR(1). 
ρ(1) = ɸ  
 r(1) =    = 0.6607 

ɸ  = α, notation slip



AR(p)

For AR(p) processes we write down a 
recursion,

The Yule-Walker equations



Derive Yule-Walker eqns



Yule-Walker Estimates

A set of p equations in p unknowns, solve for      to     .



MA(q) and ARMA(p,q)

The method of moments approach gets 
complicated.  End up with non-linear 
equations to be solved numerically.

The method of moments estimators 
have bad properties for MA and ARMA 
processes anyway, so we'll leave it here.



Your turn
Remember linear regression? 
yi = β0 + β1xi + εi

We can find estimates for β0 ,β1 by 
minimizing  

What goes in the .... ?

nX

i=1

⇣
yi � �̂0 � �̂1xi

⌘2



L______ s_______

Consider the AR(1) process 
xt = α1xt-1 + wt 
Define the residual,                  
We could consider finding the     that 
minimises the sum of squared 
residuals, 

since we don't see x0

called 
conditional 
least squares

et = xt � ↵̂1xt�1

↵̂1

nX

t=2

(xt � ↵̂1xt�1)
2 =

nX

t=2

e

2
t



L_____ s_____ for MA

In general we can always define these 
residuals, but for MA and ARMA processes 
they are recursive.  For example, MA(1) 

assume e0 = 0e1 = x1 + �1e0

e2 = x2 + �1e1

...

en = xn + �1en�1



L_____ s______ in ARMA

For a general ARMA(p,q): 

And we have to set ep = ... = ep+1-q = 0, 
and sum starting at t = p, to avoid the xt 
we haven't observed

The minimization is done numerically

et = xt � ↵1xt�1 � . . .� ↵pxt�p

+ �1et�1 + . . .+ �qet�q



M________ L_________
Assume a distribution for the white noise 
(usually Gaussian), then write the joint 
density function of our data as a function 
of the parameters, the likelihood, 
L(β, θ, σ2) = f(x1, x2, ... xn; β, θ, σ2) 
Find the parameters that maximise the 
likelihood.

For the non-statisticans: The joint density, f, tells us the probability of our data given 
certain parameter values. The likelihood, L, tells us how likely certain parameters are given 
our data (f and L are the same function, we just switch what we consider to be the 
variable).  We estimate the parameters by choosing the most likely parameters given the 
data we saw.



M________ L_________

Assuming our white noise is Gaussian 
then the ARMA(p, q), xt, process is also 
Gaussian and the likelihood is 

where

It's complicated, but there are general algorithms for 
maximizing it.  



Maximum Likelihood

The way the function arima in R does it 
by default. 
Nice asymptotic properties, deals with 
missing data easily. 
Always lower variance than method of 
moments.



Fitting in R

arima(ts, order = c(p, d, q))

ignore for now



Thursday

I’m out of town. 
Chris will lead lecture. 
Bring laptops!


