

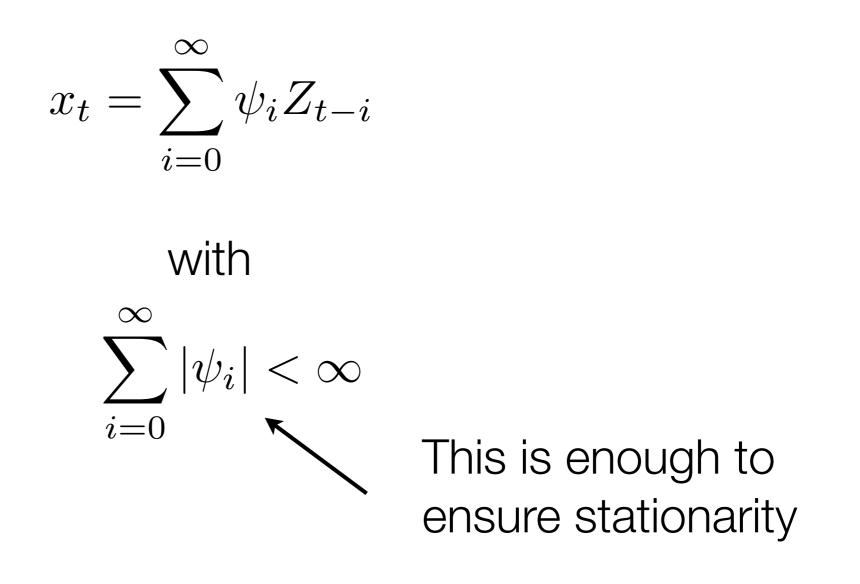
Properties Of AR(P) & MA(Q)

Jan 21 2016

Charlotte Wickham

A General Linear Process

A linear process x_t is defined to be a linear combination of white noise variates, Z_t ,



Autocovariance

One can show that the autocovariance of a linear process is,

$$\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \psi_{i+h} \psi_i$$

Your turn

Write the MA(1) and AR(1) processes in the form of linear processes.

I.e. what are the ψ_j ?

$$x_t = \sum_{i=0}^{\infty} \psi_i Z_{t-i}$$

Verify the autocovariance functions for MA(1) and AR(1)

$$\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \psi_{i+h} \psi_i$$

The **backshift** operator, B, is defined as $Bx_t = x_{t-1}$

It can be extended to powers in the obvious way:

 $B^{2}x_{t} = (BB)x_{t} = B(Bx_{t}) = Bx_{t-1} = x_{t-2}$ So, $B^{k}x_{t} = x_{t-k}$

Your turn

- MA(1): $x_t = \beta_1 Z_{t-1} + Z_t$
- AR(1): $x_t = \alpha_1 x_{t-1} + Z_t$

Write the MA(1) and AR(1) models using the backshift operator.

Difference Operator

The **difference** operator, ∇ , is defined as, $\nabla^{d} x_{t} = (1 - B)^{d} x_{t}$ (e.g. $\nabla^{1} x_{t} = (1 - B) x_{t} = x_{t} - x_{t-1}$)

 $(1-B)^{d}$ can be expanded in the usual way, e.g. $(1 - B)^{2} = (1 - B)(1 - B) = 1 - 2B + B^{2}$

Some non-stationary series can be made stationary by differencing, see HW#3.

MA(q) process

A moving average model of order q is defined to be,

$$x_t = Z_t + \beta_1 Z_{t-1} + \beta_2 Z_{t-2} + \ldots + \beta_q Z_{t-q}$$

where Z_t is a white noise process with variance σ^2 , and the β_1, \ldots, β_q are parameters.

Can we write this using B?

Moving average operator

$$\theta(B) = 1 + \beta_1 B + \beta_2 B^2 + \ldots + \beta_q B^q$$

Will be important in deriving properties later,....

AR(p) process

An autoregressive process of order p is defined to be,

$$x_{t} = \alpha_{1} x_{t-1} + \alpha_{2} x_{t-2} + \ldots + \alpha_{p} x_{t-p} + Z_{t}$$

where Z_t is a white noise process with variance σ^2 , and the $\alpha_1, \dots, \alpha_p$ are parameters.

Can we write this using B?

$$\phi(B) = 1 - \alpha_1 B - \alpha_2 B^2 - \ldots - \alpha_p B^p$$

$$\theta(B) = 1 + \beta_1 B + \beta_2 B^2 + \ldots + \beta_q B^q$$

$$\phi(B) = 1 - \alpha_1 B - \alpha_2 B^2 - \ldots - \alpha_p B^p$$

MA(q):
$$x_t = \theta(B)Z_t$$

AR(p): $\varphi(B)x_t = Z_t$

Extend AR(1) to AR(p) and MA(1) to MA(q)

Combine them to form ARMA(p, q) processes

Discover a few hiccups, and resolve them.

Then find the ACF (and PACF) functions for ARMA(p, q) processes.

Figure out how to fit a ARMA(p,q) process to real data.

hiccup #1

Your turn

Consider the two MA(1) processes:

$$x_t = 5w_{t-1} + w_t$$

$$y_t = 1/5 W_{t-1} + W_t$$

What are their autocorrelation functions?

 $\rho(h) = 1$, when h = 0= $\beta_1/(1 + \beta_1^2)$, h = 1= 0, $h \ge 2$

Which one do we choose?

Define an MA process to **invertible** if it can be written,

 ∞

$$\pi(B)x_t = \sum_{j=0}^{\infty} \pi_j x_{t-j} = w_t$$

an infinite AR process

where
$$\pi(B) = \sum_{j=0}^{\infty} \pi_j B^j$$
 and $\sum_{j=0}^{\infty} |\pi_j| < \infty$

 $\begin{aligned} x_t &= \theta(B) w_t \\ \frac{1}{\theta(B)} x_t &= w_t \end{aligned}$

Invertible process

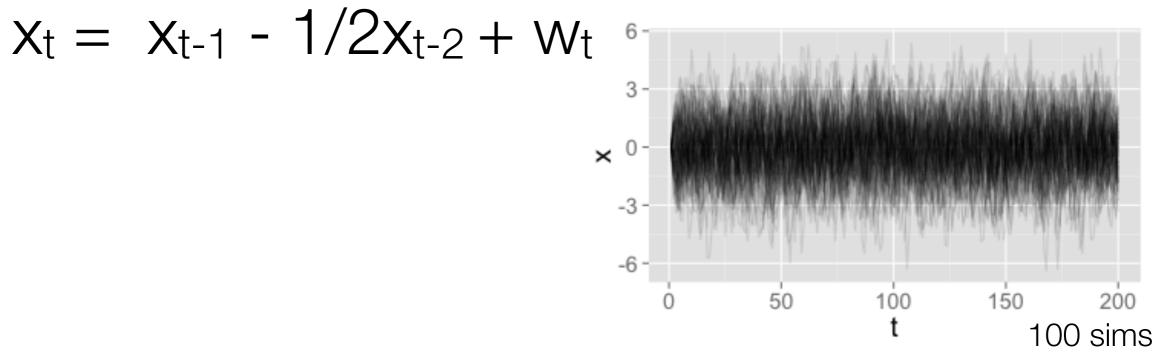
- For MA(1), the process is invertible if
- $|\beta_1| < 1.$
- For MA(q), the process is invertible if the roots of the polynomial $\Theta(B)$ all lie outside the unit circle,
- i.e. $\theta(z) \neq 0$ for any $|z| \leq 1$.

We will choose to consider only invertible processes

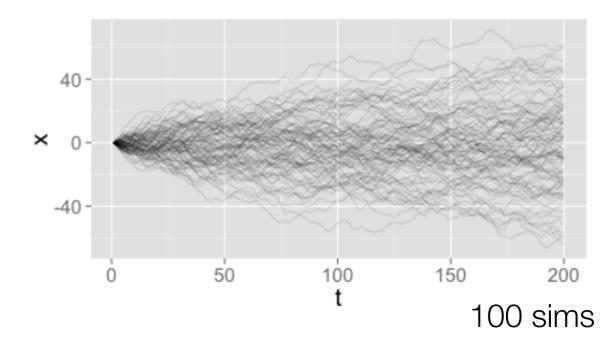
Your turn

Is the MA(2) model, $x_t = w_t + 2w_{t-1} + w_{t-2}$ invertible? What about, $x_t = w_t + 1/2 w_{t-1} + 1/18 w_{t-2}$?

Consider these two AR(2) models



 $x_t = 1.5x_{t-1} - 1/2x_{t-2} + W_t$



$$x_0 = x_1 = 0$$

hiccup #2: when is an AR(p) stationary?

For AR(1), the process is stationary if $|\alpha_1| < 1$.

For AR(p), the process is stationary if the roots of the polynomial ϕ (B) all lie outside the unit circle,

i.e. $\phi(z) \neq 0$ for $|z| \leq 1$.

ARMA(p, q) process

A process, x_t , is ARMA(p,q) if it has the form,

$$\begin{split} & \oint(\mathsf{B}) \ \mathsf{x}_{\mathsf{t}} = \theta(\mathsf{B}) \ \mathsf{Z}_{\mathsf{t}}, \\ & \text{where } \mathsf{Z}_{\mathsf{t}} \text{ is a white noise process with } \\ & \text{variance } \sigma^2, \text{ and} \\ & \theta(B) = 1 + \beta_1 B + \beta_2 B^2 + \ldots + \beta_q B^q \\ & \phi(B) = 1 - \alpha_1 B - \alpha_2 B^2 - \ldots - \alpha_p B^p \end{split}$$

We will assume $Z_t \sim N(0, \sigma^2)$

Properties of ARMA(p,q)

An ARMA(p, q) process is **stationary** if and only if the roots of the polynomial $\phi(z)$ lie outside the unit circle.

I.e. $\phi(z) \neq 0$, for |z| < 1

An ARMA(p, q) process is **invertible** if and only if the roots of the polynomial $\theta(z)$ lie outside the unit circle.

I.e. $\theta(z) \neq 0$, for |z| < 1

Parameter Redundancy

Example: $x_t = 1/2x_{t-1} - 1/2 w_{t-1} + w_t$ looks like ARMA(1, 1) but is just white noise.

For an ARMA(p, q) model we assume $\theta(z)$ and $\phi(z)$ have no common factors.

Your turn

Rewrite this ARMA(2, 2) model in a non-redundant form,

 $x_t = -5/6 x_{t-1} - 1/6 x_{t-2} + 1/8 w_{t-2} + 6/8 w_{t-1} + w_t$

Finding roots in R

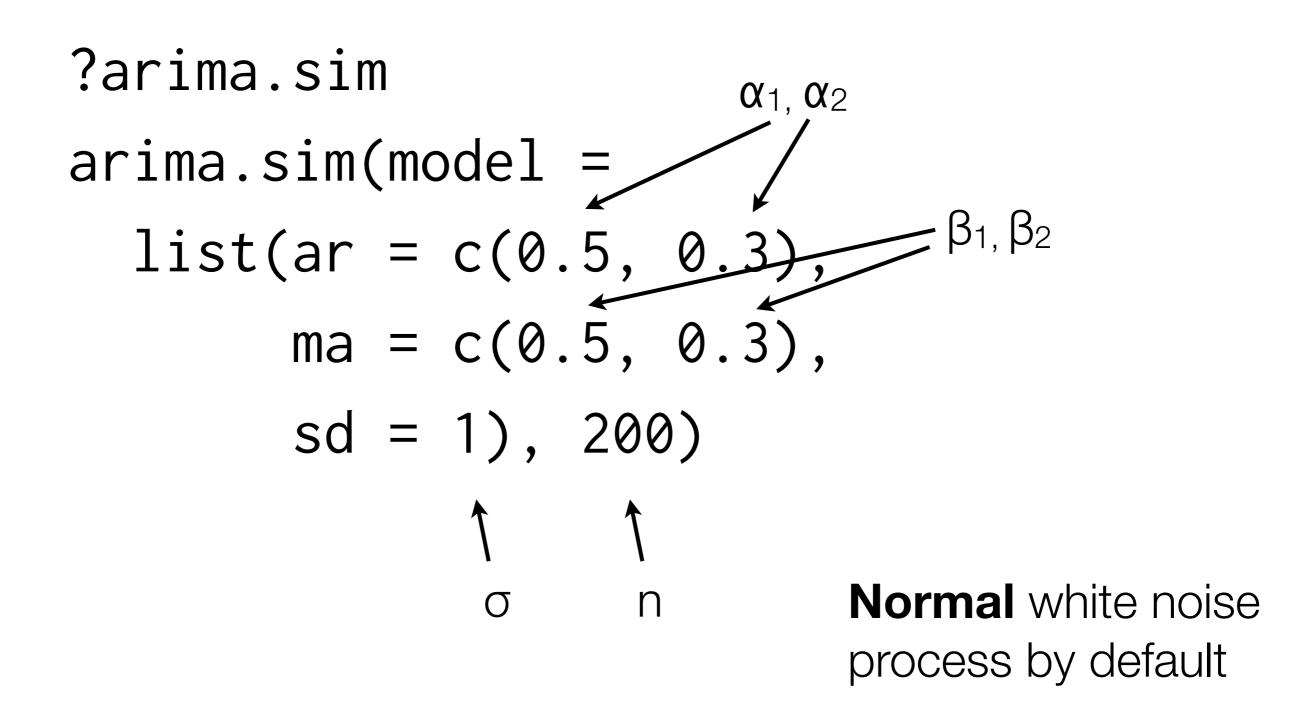
You can check in R:

roots for $\theta(B) = 1 + 1/2B + 1/18B^2$ $x_t = w_t + 1/2 w_{t-1} + 1/18 w_{t-2}$

polyroot(c(1, 1/2, 1/18))

check roots have modulus > 1
Mod(polyroot(c(1, 1/2, 1/18))) > 1

Simulating ARMA(p,q) processes in R



What is the ACF for an ARMA(p, q) process? It's complicated!

An approach

1. Write the ARMA(p, q) process in the onesided form. $x_t = \sum_{i=0}^{\infty} \psi_i Z_{t-i} = \psi(B) Z_t$

2. Find the ψ_j by equating coefficients 3. Use the general result for linear processes that, ∞

$$\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \psi_{i+h} \psi_i$$

What is the ACF of: $x_t = 0.9 x_{t-1} + 0.5 Z_{t-1} + Z_t$

More generally...

You can set down a recursion for the autocorrelation function and solve it.

An aside

Sometimes we take a ARMA process,

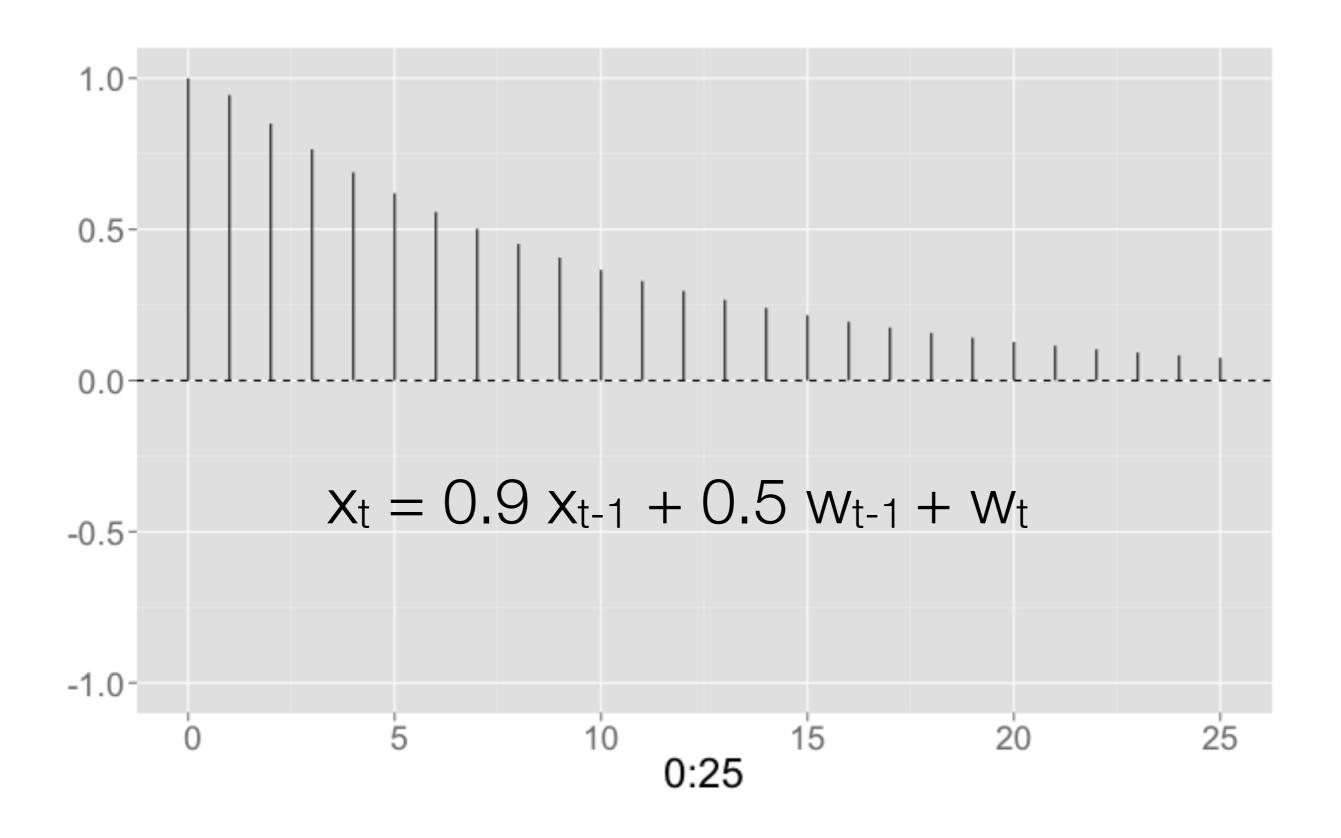
$$\phi(B)x_t = \theta(B)Z_t$$

where $\phi(B)$ and $\theta(B)$ are finite order polynomials,

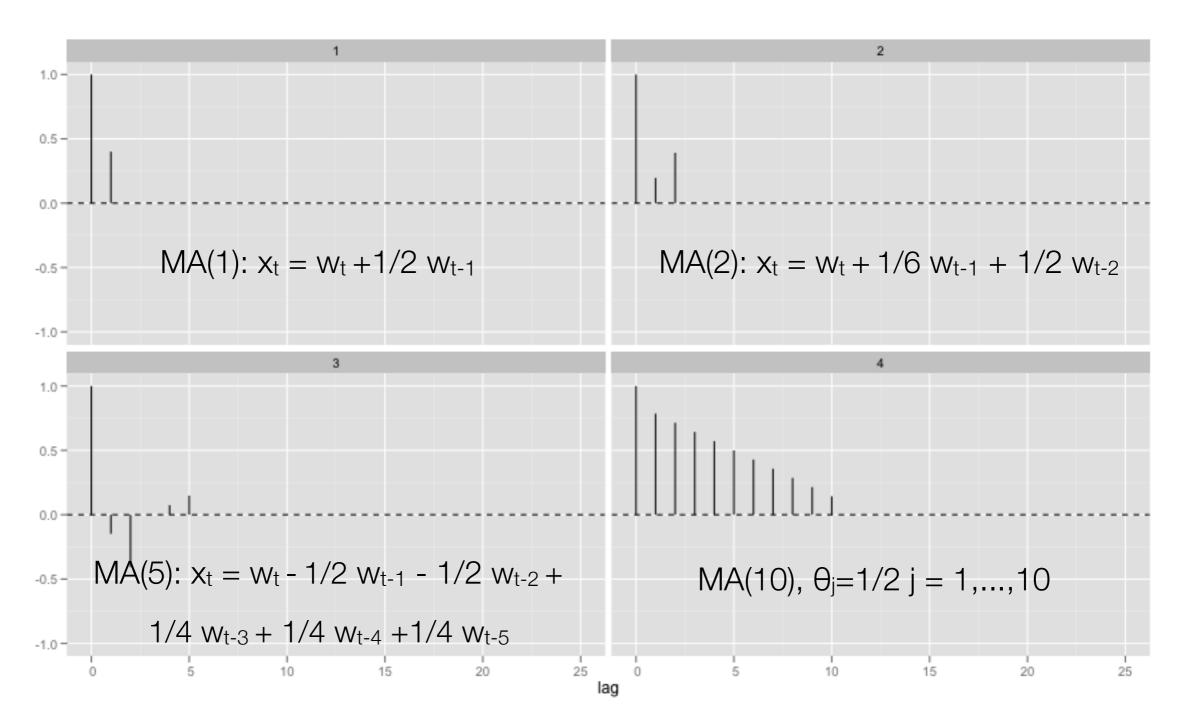
And con convert it to an infinite order MA process, $x_t = \psi(B) Z_t$ $\psi(B) = \theta(B) / \phi(B)$

OR an infinite order AR process, $\pi(B)x_t = Z_t$ $\pi(B) = \phi(B)/\theta(B)$

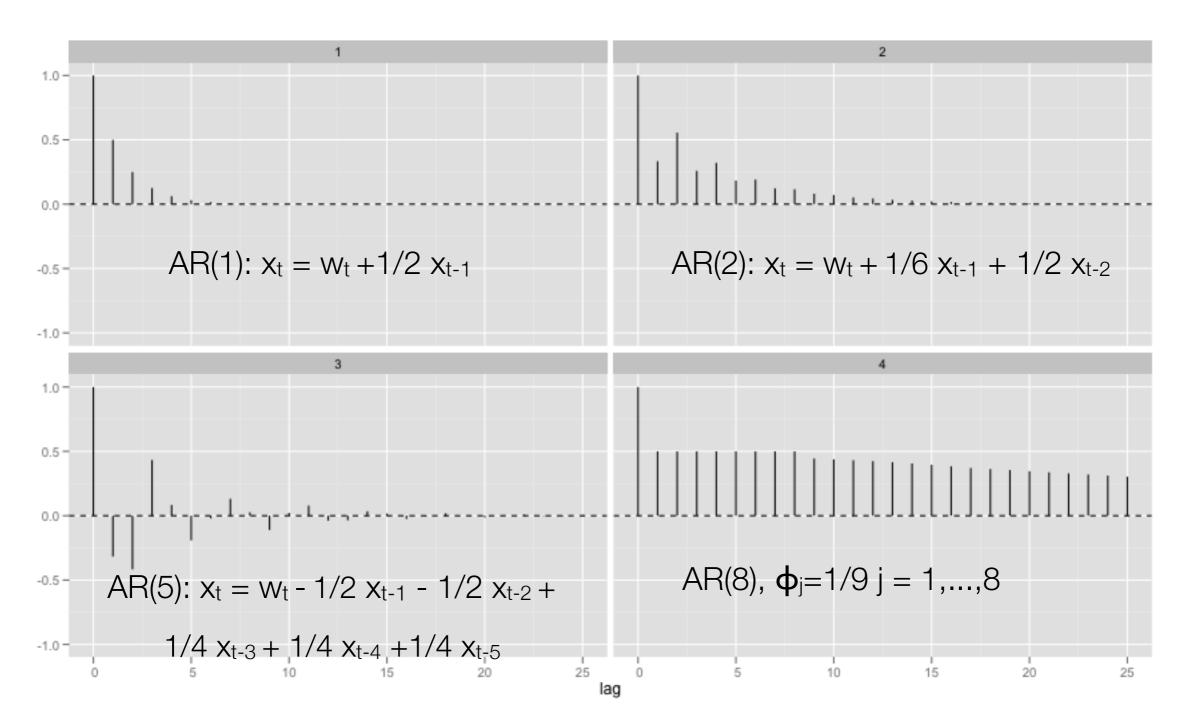
 ψ , ϕ , π , θ , are pretty consistent notation for these polynomials



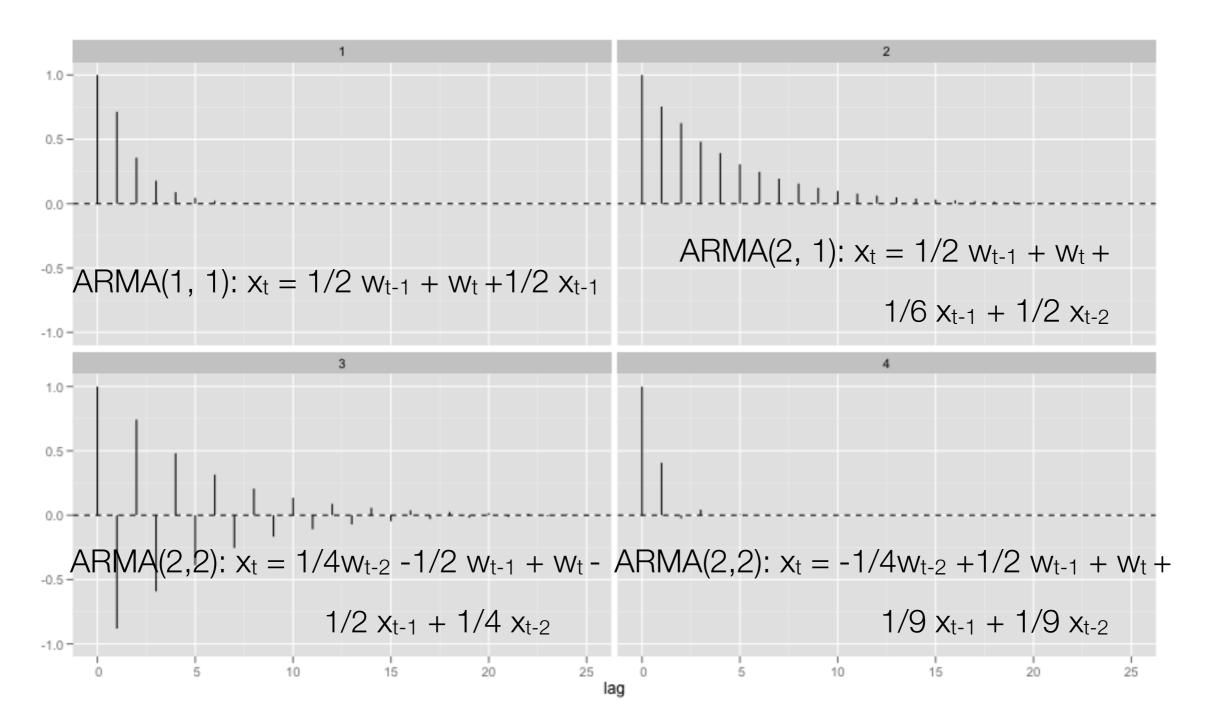
 $\left|\right\rangle$



A



ARMA(p) \bigcirc)



One is AR(1), alpha_1 = 0.6 The other is ARMA(1, 1), beta_1 = 0.5, alpha_1 = 0.5

