

Some Basic Time Series Models

Jan 19 2016

Charlotte Wickham

Weak Stationarity

A time series {x_t} is **weakly stationary** if it's mean function doesn't depend on time, and it's autocovariance function only depends on the distance between the two time points,

xt assumed to have finite variance

Autocorrelation

For a stationary process the autocorrelation is:

 $Cor(x_t, x_{t+h}) = \rho(h) = \Upsilon(h) / \Upsilon(0)$

Some basic models

White noise Random walk with drift Moving average of order 1 MA(1) Autoregressive of order 1 AR(1)

> What is the mean function? What is the autocovariance function? Is the process weakly stationary?

White noise

- { w_t } is a white noise process if w_t are **uncorrelated** identically distributed random variables with
- $E[w_t] = 0 \text{ and } Var[w_t] = \sigma^2, \text{ for all } t$

If the w_t are Normally (Gaussian) distributed, the series is known as Gaussian white noise.

White noise

White noise

- What is the mean function? $\mu_t = E[w_t] = 0$ What is the autocovariance function? $\Upsilon(h) = \{ \sigma^2, h = 1$
 - { 0, otherwise

Is white noise stationary? Yes.

Series w

Lag

Random Walk with drift drift, a constant $X_t = \delta + X_{t-1} + W_t$

where $\{w_t\}$ is a white noise process, and $x_0 = 0$.

Can rewrite as: $x_t = t\delta + \sum_{j=1}^{t} w_j$

Random walk (drift = 0.1)

Your turn Random walk with drift $X_t = t\delta + \sum_{j=1}^{t} W_j$

What is the mean function?

$\mu_t = E[w_t] = ?$

What is the autocovariance function?

Y(t, t+h) = Cov(w_t, w_{t+h})?

Is the random walk model stationary?

Moving average MA(1)

$x_t = \beta_1 w_{t-1} + w_t$ where {w_t} is a white noise process.

We'll see higher order MA processes later...

$MA(1) \beta_1 = 1$

Your turn $MA(1) = \beta_1 W_{t-1} + W_t$ What is the mean function?

What is the autocovariance function?

Is MA(1) stationary?

 $MA(1) \beta_1 = 1$

Series ma1

Autoregressive AR(1)

$x_t = \alpha_1 x_{t-1} + w_t$ where {w_t} is a white noise process.

We'll see higher order AR processes later...

AR(1)**Q**₁= 0.9

AR(1)**Q**₁= 0.5

AR(1)

What is the mean function?

What is the autocovariance function?

Is AR(1) stationary?

 $AR(1) \alpha_{1} = 0.9$

Series ar1

Three stationary models

White noise	MA(1), any β ₁	AR(1), α ₁ < 1
ρ(h) = 1, when h = 0 = 0, otherwise	$\rho(h) = 1$, when $h = 0$ = $\beta_1/(1 + \beta_1^2)$, $h = 1$ = 0, $h \ge 2$	$\rho(h) = 1$, when $h = 0$ = α_1^h , $h > 0$
Only lag 0 shows non-zero ACF.	Only lag 0 and 1 show non-zero ACF.	Decreasing ACF

Which models might these simulated data come from?

A General Linear Process

A linear process x_t is defined to be a linear combination of white noise variates, Z_t ,

Autocovariance

One can show that the autocovariance of a linear process is,

$$\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \psi_{i+h} \psi_i$$

Your turn

Write the MA(1) and AR(1) processes in the form of linear processes.

I.e. what are the ψ_j ?

$$x_t = \sum_{i=0}^{\infty} \psi_i Z_{t-i}$$

Verify the autocovariance functions for MA(1) and AR(1)

$$\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \psi_{i+h} \psi_i$$

MA(1) we did AR(1) you do

The **backshift** operator, B, is defined as $Bx_t = x_{t-1}$

It can be extended to powers in the obvious way:

 $B^{2}x_{t} = (BB)x_{t} = B(Bx_{t}) = Bx_{t-1} = x_{t-2}$ So, $B^{k}x_{t} = x_{t-k}$

MA(1): $x_t = \beta_1 Z_{t-1} + Z_t$

AR(1): $x_t = \alpha_1 x_{t-1} + Z_t$

Your turn

Write the MA(1) and AR(1) models using the backshift operator.

Difference Operator

The **difference** operator, ∇ , is defined as, $\nabla^{d} x_{t} = (1 - B)^{d} x_{t}$ (e.g. $\nabla^{1} x_{t} = (1 - B) x_{t} = x_{t} - x_{t-1}$)

 $(1-B)^{d}$ can be expanded in the usual way, e.g. $(1 - B)^{2} = (1 - B)(1 - B) = 1 - 2B + B^{2}$

Some non-stationary series can be made stationary by differencing, see HW#2.

Roadmap

- Extend AR(1) to AR(p) and MA(1) to MA(q) Combine them to form ARMA(p, q) processes
- Discover a few hiccups, and resolve them.
- Then find the ACF (and PACF) functions for ARMA(p, q) processes.
- Figure out how to fit a ARMA(p,q) process to real data.