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So far...

xt = mt + st + zt
Variable  
measured  
at time t

Trend Seasonality Noise{Estimate and  
subtract off

Should be left with this, 
stationary but probably 
has serial correlation



Residuals in Corvallis temperature series

Temp - loess smooth on day of year - loess smooth on date



Your turn

Now I have residuals, how could I 
check the variance doesn't change 
through time (i.e. is stationary)? 



Is the variance stationary?
Same checks as for mean except using 
squared residuals or absolute value 
of residuals. 
Why? 
var(x) = 1/n ∑ ( x - μ)2 
Converts a visual comparison of spread 
to a visual comparison of mean.



Plot squared residuals against time

qplot(date, residual^2, data = corv) + 
  geom_smooth(method = "loess") 



Plot squared residuals against season

qplot(yday, residual^2, data = corv) + 
  geom_smooth(method = "loess", size = 1)



Fitted values against residuals

qplot(temp - residual, residual^2, data = corv) + 
  geom_smooth(method = "loess", size = 1) 

Looking for mean-variance relationship



Non-stationary variance

Just like the mean you can attempt to 
remove the non-stationarity in variance.   
However, to remove non-stationary 
variance you divide by an estimate of 
the standard deviation. 



Your turn

For the temperature series, serial 
dependence (a.k.a autocorrelation) 
means that today's residual is 
dependent on yesterday's residual. 

Any ideas of how we could check that?



Is there autocorrelation in the residuals?
> corv$residual_lag1 <- c(NA, corv$residual[-nrow(corv)]) 

> head(corv) 
.     residual   residual_lag1 
.    1.5856663              NA 
.   -0.4928295       1.5856663 
.    1.4281641      -0.4928295 
.    3.3486381       1.4281641 
.    1.2685831       3.3486381 
.   -4.8120101       1.2685831 

> tail(corv) 
.    residual  residual_lag1 
.    1.705234       7.335494 
.   14.077141       1.705234 
.   20.451230      14.077141 
.   18.827518      20.451230 
.   12.206022      18.827518 
.    3.586756      12.206022 

xt-1 = lag 1 of xt

Also see ?lag for ts 
objects



qplot(residual, residual_lag1, data = corv)

> with(corv, cor(residual, residual_lag1, use = "pairwise.complete.obs")) 
[1] 0.6681828 0.67



qplot(residual, residual_lag2, data = corv)

> with(corv, cor(residual, residual_lag2, use = "pairwise.complete.obs")) 
[1] 0.4306014 0.44

corv$residual_lag2 <- c(NA, corv$residual_lag1[-nrow(corv)]) 



Sample autocovariance
The sample autocovariance of xt at lag h, is 
 

Almost the usual definition of sample covariance, 
apart from divisor.



Sample autocorrelation
The sample autocorrelation of xt at lag h, 
is the sample covariance at lag h, divided 
by the sample covariance at lag 0, 
 

Usually displayed at a plot against h.

aka Correlogram



acf(corv$residual, na.action = na.pass)$acf
always 1

0.66

0.42

Useful trick: square to get R2

0.12 = 1% of variation at lag 7 
explained by current residual



acf(corv$residual, lag.max = 400,  
na.action = na.pass)

One year lag

Either our seasonal model 
is lacking, or there is real 
correlation at one year lag.



acf(corv$temp, lag.max = 400, na.action = na.pass)

You can find the sample acf on the raw series too, 
but most of this pattern is explained by the seasonality 



Autocorrelation function
The autocorrelation function and it's 
partner the partial autocorrelation 
function (coming soon) are central to 
time domain time series analysis. 
We will learn the expected shape for 
some standard models of correlated 
time series, then use that knowledge to 
choose models for our data.



That ends the exploratory data analysis section....

We'll come back to these ideas when 
we get to regression, but for the next 
few weeks we will talk only about 
stationary series. 

And now some math...



Notation
A time series { xt } is a sequence of random variables 
indexed by t (time), t = 1,...,n. 
Most of the time (at least in this class) we only have a 
single time series. 
We assume that there are a population of possible time 
series generated by some time series model but we 
only observe one. 
This is why stationarity is so central.  A longer time 
series wouldn’t give us any more information about the 
properties the series, if those properties were changing. 



Basic moments
The mean function is, 
μt = E[ xt ] 
The autocovariance function is, 
ϒ(s, t) = E[ (xs - μs) (xt - μt)] 
The variance function is, 
σ2t= ϒ(t, t) = E[ (xt - μt)2] 



Stationarity
A time series { xt } is strictly stationary if 
the joint distribution function of  
{ xt1, xt2, ..., xtk} is identical to the joint 
distribution function of  
{ xt1+h, xt2+h, ..., xtk+h} 
for all k = 1, 2, ...  
all time points {t1, ... tn} and  
all h = ±1, ±2,...



Weak Stationarity

A time series {xt} is weakly stationary if 
it's mean function doesn't depend on 
time, and it's autocovariance function 
only depends on the distance between 
the two time points, 
μt = E[ xt ] = μ 
ϒ(s, t) = Cov(xs, xt) = ϒ(t - s) 

xt assumed to have finite variance

Often rewrite as  
ϒ(h) = Cov(xt, xt+h)


