
Stat 565

Charlotte Wickham stat565.cwick.co.nz

GRAPHICS AND EDA
Jan 7 2016

Your turn
1. Get your R/RStudio up and running.
2. Grab today's code from the class
webpage.
3. Run up to: === HERE! ===
OR make a friend and sit next to
someone with a laptop

Daily average temperature in Corvallis

Our goal today is to go from the raw data, to this plot

annual
average

Today

Data structure and dealing with dates in R
Graphical exploration of time series using
ggplot2
Aggregation and averaging using dplyr
There is no requirement you use the packages I use

I'm just showing you the way I do things

Getting on the same page with R

This also won’t be very thorough introduction to any of these packages.
My goal is to give you some examples of how useful they are,

some experience using them,
and pointers on where to learn more.

You can always ask me for more info!

Data goes in data.frames

Original data

character

We'll make these
 date year month yday
2000-01-01 2000 1 1
2000-01-02 2000 1 2
2000-01-03 2000 1 3
2000-01-04 2000 1 4
2000-01-05 2000 1 5
2000-01-06 2000 1 6

 PST temp
1 2000-1-1 42
2 2000-1-2 40
3 2000-1-3 42
4 2000-1-4 44
5 2000-1-5 42
6 2000-1-6 36

Times & Dates in R
R won't know something is a date
unless you tell it:
01/02/2014 - 01/01/2014

"01/02/2014" - "01/01/2014"

as.Date("01/02/2014") - as.Date("01/01/2014")

Same with times
See ?DateTimeClasses
(and all the suggestions in the See Also section)

lubridate
An R package that makes converting and working with dates and times a little easier.
library(lubridate)

ymd, dmy, mdy,...for converting strings that contain dates

ymd("2010-12-01")

mdy("1/01/10")

More generally use parse_date_time

parse_date_time("1/01/10", "mdy")

year, month, day, yday, wday for pulling out parts of a date

today()

class(today())

month(today())

year(today())

yday(today())

wday(today())

 ?lubridate

Convert PST to date

corv$date <- ymd(corv$PST)

corv$year <- year(corv$date)
corv$month <- month(corv$date)
corv$yday <- yday(corv$date)

Your turn
Scan the Details section in the help for parse_date_time to
find out how formats are specified.
Then try to convert these strings to dates and times.

A <- "1-7-14"

B <- "Jan 7 14"

C <- "1:15 AM 2014-01-07"

D <- "3:25 PM"

E <- "Tues Jan 7 2014"

qplot(date, temp, data = corv, geom = "line")

A "time series" plot in ggplot2

qplot(x = date, y = temp, data = corv, geom = "line")

variable on
 the x-axis

variable on
 the y-axis

the data frame
the variables
are in

the geometric object
used to represent the
data:
point
boxplot
histogram
tile
...
http://docs.ggplot2.org

http://docs.ggplot2.org/

Your turn
qplot(date, temp, data = corv, geom = "line")

1. Plot precipitation against temperature using points.

2. Plot precipitation against month using points.

3. Try the previous plot with geom = "jitter" , what
does it do?

?geom_point

qplot(date, temp, data = corv)

qplot(date, temp, data = corv,

 colour = month)

qplot(date, temp, data = corv,

 colour = factor(month))
qplot(date, temp, data = corv,

 size = month)

qplot(date, temp, data = corv,

 shape = month)

Map other aesthetics to other variables
depends on the geom: look at the help to find out what is available,

or at docs.ggplot2.org for examples

depends on the variable: some aesthetics only work with discrete variables,
some have different behaviour for discrete variables

Your turn

How could I display the data to examine the average annual
seasonal pattern?

Sketch your ideas, or try to make them in R

Looking for a trend
A simple exploratory approach might be to aggregate
our daily data to annual data.
For example, let’s just find the average temperature
for each year and plot it against years.
There are lots of ways to do this, but it’s an ideal task
to introduce dplyr
“dplyr provides a flexible grammar of data
manipulation. It's the next iteration of plyr, focused on
tools for working with data frames (hence the d in the
name).”

dplyr
A set of data (frame) manipulation verbs:
filter return certain rows
select return certain columns
arrange arrange rows (i.e. sorted)
summarize collapse to a single row

mutate add new columns

+ grouped operations with group_by

last_year <- filter(corv, year == 2013)

mutate(last_year,

 avg_temp = mean(temp, na.rm = TRUE),

 n_temp = sum(!is.na(temp))

)

summarise(last_year,

 avg_temp = mean(temp, na.rm = TRUE),

 n_temp = sum(!is.na(temp))

)

mutate and summarise

What’s happening? What is being returned?

Chaining operations %>%

last_year %>%

 mutate(

 avg_temp = mean(temp, na.rm = TRUE),

 n_temp = sum(!is.na(temp))

)

last_year %>%

 summarize(

 avg_temp = mean(temp, na.rm = TRUE),

 n_temp = sum(!is.na(temp))

)

x %>% f(y) is equivalent to f(x, y)
read %>% as “then”

mutate and summarize
make new columns
in the data.frame as

defined by the expressions

make a new data.frame
with columns defined by

these expressions

 mutate(.data, ...)

summarize(.data, ...)

data.frame expressions that

calculate variables

group_by

Two very common use cases:
corv %>% group_by(year) %>%

 summarise(avg_temp = mean(temp, na.rm = TRUE))

corv %>% group_by(year) %>%

 mutate(avg_temp = mean(temp, na.rm = TRUE))

Can you figure out what is being returned?

data.frame
group the
data.frame by year

Take the corv data.frame and group it by year. For
each year (i.e. group) use the summarise function to
create a new column called avg_temp, that contains
the value mean(temp,…)

corv %>% group_by(year) %>%

 summarise(avg_temp = mean(temp, na.rm = TRUE))

take the grouped data.frame and
summarise by each group

summarise to annual level data
ann_temp <- corv %>% group_by(year) %>%
 summarise(
 avg_temp = mean(temp, na.rm = TRUE),
 n = sum(!is.na(temp)))

qplot(year, avg_temp,
 data = ann_temp, geom = "line")
but we lose all sense of scale

An alternative, rather than summarise, mutate
corv <- corv %>%
 group_by(year) %>%
 mutate(
 avg_temp = mean(temp, na.rm = TRUE),
 n = sum(!is.na(temp)))

qplot(date, avg_temp,
 data = corv, geom = "line",
 size = I(2), colour = I("blue")) +
 geom_line(aes(y = temp))

Your turn

Think of another annual summary,
calculate it and plot it over time.

Try doing a monthly summary, or a day
of the year summary (i.e. find the
average Jan 1 temperature).

Google is your friend
http://stackoverflow.com/
http://www.cookbook-r.com/Graphs/

Work through a vignette:
dplyr: https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
lubridate: https://cran.rstudio.com/web/packages/lubridate/vignettes/
lubridate.html

Read papers outlining the ideas behind the packages:
ggplot2: http://vita.had.co.nz/papers/layered-grammar.html
lubridate:http://www.jstatsoft.org/v40/i03/paper

Learning more

Ask me!

http://stackoverflow.com/
http://www.cookbook-r.com/Graphs/
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://vita.had.co.nz/papers/layered-grammar.html
http://www.jstatsoft.org/v40/i03/paper

